989 resultados para ELEMENT COMPOSITION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basalts of the Parana continental flood basalt (PCFB) province erupted through dominantly Proterozoic continental crust during the Cretaceous. In order to examine the mantle source(s) of this major flood basalt province, we studied Os, Sr, Nd, and Pb isotope systematics, and highly siderophile element (HSE) abundances in tholeiitic basalts that were carefully chosen to show the minimal effects of crustal contamination. These basalts define a precise Re-Os isochron with an age of 131.6 +/- 2.3 Ma and an initial Os-187/Os-188 of 0.1295 +/- 0.0018 (gamma Os-187 = +2.7 +/- 1.4). This initial Os isotopic composition is considerably more radiogenic than estimates of the contemporary Depleted Mantle (DM). The fact that the Re-Os data define a well constrained isochron with an age similar to Ar-40/Ar-39 age determinations, despite generally low Os concentrations, is consistent with closed-system behavior for the HSE. Neodymium, Sr, and Pb isotopic data suggest that the mantle source of the basalts had been variably hybridized by melts derived from enriched mantle components. To account for the combined Os, Nd, Sr, and Pb isotopic characteristics of these rocks, we propose that the primary melts formed from metasomatized asthenospheric mantle (represented by arc-mantle peridotite) that underwent mixing with two enriched components, EM-I and EM-II. The different enriched components are reflected in minor isotopic differences between basalts from southern and northern portions of the province. The Tristan da Cunha hotspot has been previously suggested to be the cause of the Parana continental flood basalt magmatism. However, present-day Tristan da Cunha lavas have much higher Os-187/Os-188 isotopic compositions than the source of the PCFB. These data, together with other isotopic and elemental data, preclude making a definitive linkage between the Tristan plume and the PCFB. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, Canoparmelia texana lichenized fungi species was used as a passive biomonitor of the atmospheric pollution from the industrial city of So Mateus do Sul, PR, Brazil. Lichen samples collected from tree barks were cleaned, freeze-dried and analyzed by neutron activation analysis. Comparisons were made between the element concentrations obtained in lichens from this city and that from a clean area of Atlantic Forest in Intervales Park, SP. The high concentrations of elements As, Ca, Co, Cr, Fe, Hf, Sb, and Th found in lichens could be attributed to the emissions from a ceramic and an oil shale plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to assess the composition of the rainwater in Araraquara City, Brazil, a region strongly influenced by pre-harvest burning of sugar cane crops. Chemical and mineralogical variables were measured in rainwater collected during the harvest, dry period of 2009 and the non-harvest, wet period of 2010. Ca2+ and NH4+ were responsible for 55% of cations and NO3- for 45% of anions in rainwater. Al and Fe along with K were the most abundant among trace elements in both soluble and insoluble fractions. High volume weighted mean concentration (VWM) for most of the analyzed species were observed in the harvest, dry period, mainly due to agricultural activities and meteorological conditions. The chemistry of the Araraquara rainwater and principal component analysis (PCA) quantification clearly indicate the concurrence of a diversity of sources from natural to anthropogenic especially related to agricultural activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZusammenfassungDie Bildung von mittelozeanischen Rückenbasalten (MORB) ist einer der wichtigsten Stoffflüsse der Erde. Jährlich wird entlang der 75.000 km langen mittelozeanischen Rücken mehr als 20 km3 neue magmatische Kruste gebildet, das sind etwa 90 Prozent der globalen Magmenproduktion. Obwohl ozeanische Rücken und MORB zu den am meisten untersuchten geologischen Themenbereichen gehören, existieren weiterhin einige Streit-fragen. Zu den wichtigsten zählt die Rolle von geodynamischen Rahmenbedingungen, wie etwa Divergenzrate oder die Nähe zu Hotspots oder Transformstörungen, sowie der absolute Aufschmelzgrad, oder die Tiefe, in der die Aufschmelzung unter den Rücken beginnt. Diese Dissertation widmet sich diesen Themen auf der Basis von Haupt- und Spurenelementzusammensetzungen in Mineralen ozeanischer Mantelgesteine.Geochemische Charakteristika von MORB deuten darauf hin, dass der ozeanische Mantel im Stabilitätsfeld von Granatperidotit zu schmelzen beginnt. Neuere Experimente zeigen jedoch, dass die schweren Seltenerdelemente (SEE) kompatibel im Klinopyroxen (Cpx) sind. Aufgrund dieser granatähnlichen Eigenschaft von Cpx wird Granat nicht mehr zur Erklärung der MORB Daten benötigt, wodurch sich der Beginn der Aufschmelzung zu geringeren Drucken verschiebt. Aus diesem Grund ist es wichtig zu überprüfen, ob diese Hypothese mit Daten von abyssalen Peridotiten in Einklang zu bringen ist. Diese am Ozeanboden aufgeschlossenen Mantelfragmente stellen die Residuen des Aufschmelz-prozesses dar, und ihr Mineralchemismus enthält Information über die Bildungs-bedingungen der Magmen. Haupt- und Spurenelementzusammensetzungen von Peridotit-proben des Zentralindischen Rückens (CIR) wurden mit Mikrosonde und Ionensonde bestimmt, und mit veröffentlichten Daten verglichen. Cpx der CIR Peridotite weisen niedrige Verhältnisse von mittleren zu schweren SEE und hohe absolute Konzentrationen der schweren SEE auf. Aufschmelzmodelle eines Spinellperidotits unter Anwendung von üblichen, inkompatiblen Verteilungskoeffizienten (Kd's) können die gemessenen Fraktionierungen von mittleren zu schweren SEE nicht reproduzieren. Die Anwendung der neuen Kd's, die kompatibles Verhalten der schweren SEE im Cpx vorhersagen, ergibt zwar bessere Resultate, kann jedoch nicht die am stärksten fraktionierten Proben erklären. Darüber hinaus werden sehr hohe Aufschmelzgrade benötigt, was nicht mit Hauptelementdaten in Einklang zu bringen ist. Niedrige (~3-5%) Aufschmelzgrade im Stabilitätsfeld von Granatperidotit, gefolgt von weiterer Aufschmelzung von Spinellperidotit kann jedoch die Beobachtungen weitgehend erklären. Aus diesem Grund muss Granat weiterhin als wichtige Phase bei der Genese von MORB betrachtet werden (Kapitel 1).Eine weitere Hürde zum quantitativen Verständnis von Aufschmelzprozessen unter mittelozeanischen Rücken ist die fehlende Korrelation zwischen Haupt- und Spuren-elementen in residuellen abyssalen Peridotiten. Das Cr/(Cr+Al) Verhältnis (Cr#) in Spinell wird im Allgemeinen als guter qualitativer Indikator für den Aufschmelzgrad betrachtet. Die Mineralchemie der CIR Peridotite und publizierte Daten von anderen abyssalen Peridotiten zeigen, dass die schweren SEE sehr gut (r2 ~ 0.9) mit Cr# der koexistierenden Spinelle korreliert. Die Auswertung dieser Korrelation ergibt einen quantitativen Aufschmelz-indikator für Residuen, welcher auf dem Spinellchemismus basiert. Damit kann der Schmelzgrad als Funktion von Cr# in Spinell ausgedrückt werden: F = 0.10×ln(Cr#) + 0.24 (Hellebrand et al., Nature, in review; Kapitel 2). Die Anwendung dieses Indikators auf Mantelproben, für die keine Ionensondendaten verfügbar sind, ermöglicht es, geochemische und geophysikalischen Daten zu verbinden. Aus geodynamischer Perspektive ist der Gakkel Rücken im Arktischen Ozean von großer Bedeutung für das Verständnis von Aufschmelzprozessen, da er weltweit die niedrigste Divergenzrate aufweist und große Transformstörungen fehlen. Publizierte Basaltdaten deuten auf einen extrem niedrigen Aufschmelzgrad hin, was mit globalen Korrelationen im Einklang steht. Stark alterierte Mantelperidotite einer Lokalität entlang des kaum beprobten Gakkel Rückens wurden deshalb auf Primärminerale untersucht. Nur in einer Probe sind oxidierte Spinellpseudomorphosen mit Spuren primärer Spinelle erhalten geblieben. Ihre Cr# ist signifikant höher als die einiger Peridotite von schneller divergierenden Rücken und ihr Schmelzgrad ist damit höher als aufgrund der Basaltzusammensetzungen vermutet. Der unter Anwendung des oben erwähnten Indikators ermittelte Schmelzgrad ermöglicht die Berechnung der Krustenmächtigkeit am Gakkel Rücken. Diese ist wesentlich größer als die aus Schweredaten ermittelte Mächtigkeit, oder die aus der globalen Korrelation zwischen Divergenzrate und mittels Seismik erhaltene Krustendicke. Dieses unerwartete Ergebnis kann möglicherweise auf kompositionelle Heterogenitäten bei niedrigen Schmelzgraden, oder auf eine insgesamt größere Verarmung des Mantels unter dem Gakkel Rücken zurückgeführt werden (Hellebrand et al., Chem.Geol., in review; Kapitel 3).Zusätzliche Informationen zur Modellierung und Analytik sind im Anhang A-C aufgeführt

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present-day climate in the Mediterranean region is characterized by mild, wet winters and hot, dry summers. There is contradictory evidence as to whether the present-day conditions (“Mediterranean climate”) already existed in the Late Miocene. This thesis presents seasonally-resolved isotope and element proxy data obtained from Late Miocene reef corals from Crete (Southern Aegean, Eastern Mediterranean) in order to illustrate climate conditions in the Mediterranean region during this time. There was a transition from greenhouse to icehouse conditions without a Greenland ice sheet during the Late Miocene. Since the Greenland ice sheet is predicted to melt fully within the next millennia, Late Miocene climate mechanisms can be considered as useful analogues in evaluating models of Northern Hemispheric climate conditions in the future. So far, high resolution chemical proxy data on Late Miocene environments are limited. In order to enlarge the proxy database for this time span, coral genus Tarbellastraea was evaluated as a new proxy archive, and proved reliable based on consistent oxygen isotope records of Tarbellastraea and the established paleoenvironmental archive of coral genus Porites. In combination with lithostratigraphic data, global 87Sr/86Sr seawater chronostratigraphy was used to constrain the numerical age of the coral sites, assuming the Mediterranean Sea to be equilibrated with global open ocean water. 87Sr/86Sr ratios of Tarbellastraea and Porites from eight stratigraphically different sampling sites were measured by thermal ionization mass spectrometry. The ratios range from 0.708900 to 0.708958 corresponding to ages of 10 to 7 Ma (Tortonian to Early Messinian). Spectral analyses of multi-decadal time-series yield interannual δ18O variability with periods of ~2 and ~5 years, similar to that of modern records, indicating that pressure field systems comparable to those controlling the seasonality of present-day Mediterranean climate existed, at least intermittently, already during the Late Miocene. In addition to sea surface temperature (SST), δ18O composition of coral aragonite is controlled by other parameters such as local seawater composition which as a result of precipitation and evaporation, influences sea surface salinity (SSS). The Sr/Ca ratio is considered to be independent of salinity, and was used, therefore, as an additional proxy to estimate seasonality in SST. Major and trace element concentrations in coral aragonite determined by laser ablation inductively coupled plasma mass spectrometry yield significant variations along a transect perpendicular to coral growth increments, and record varying environmental conditions. The comparison between the average SST seasonality of 7°C and 9°C, derived from average annual δ18O (1.1‰) and Sr/Ca (0.579 mmol/mol) amplitudes, respectively, indicates that the δ18O-derived SST seasonality is biased by seawater composition, reducing the δ18O amplitude by 0.3‰. This value is equivalent to a seasonal SSS variation of 1‰, as observed under present-day Aegean Sea conditions. Concentration patterns of non-lattice bound major and trace elements, related to trapped particles within the coral skeleton, reflect seasonal input of suspended load into the reef environment. δ18O, Sr/Ca and non-lattice bound element proxy records, as well as geochemical compositions of the trapped particles, provide evidence for intense precipitation in the Eastern Mediterranean during winters. Winter rain caused freshwater discharge and transport of weathering products from the hinterland into the reef environment. There is a trend in coral δ18O data to more positive mean δ18O values (–2.7‰ to –1.7‰) coupled with decreased seasonal δ18O amplitudes (1.1‰ to 0.7‰) from 10 to 7 Ma. This relationship is most easily explained in terms of more positive summer δ18O. Since coral diversity and annual growth rates indicate more or less constant average SST for the Mediterranean from the Tortonian to the Early Messinian, more positive mean and summer δ18O indicate increasing aridity during the Late Miocene, and more pronounced during summers. The analytical results implicate that winter rainfall and summer drought, the main characteristics of the present-day Mediterranean climate, were already present in the Mediterranean region during the Late Miocene. Some models have argued that the Mediterranean climate did not exist in this region prior to the Pliocene. However, the data presented here show that conditions comparable to those of the present-day existed either intermittently or permanently since at least about 10 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental procedure for precise and accurate measurements of isotope abundances by a miniature laser ablation mass spectrometer for space research is described. The measurements were conducted on different untreated NIST standards and galena samples by applying pulsed UV laser radiation (266 nm, 3 ns and 20 Hz) for ablation, atomisation, and ionisation of the sample material. Mass spectra of released ions are measured by a reflectron-type time-of-flight mass analyser. A computer controlled performance optimiser was used to operate the system at maximum ion transmission and mass resolution. At optimal experimental conditions, the best relative accuracy and precision achieved for Pb isotope compositions are at the per mill level and were obtained in a range of applied laser irradiances and a defined number of accumulated spectra. A similar relative accuracy and precision was achieved in the study of Pb isotope compositions in terrestrial galena samples. The results for the galena samples are similar to those obtained with a thermal ionisation mass spectrometer (TIMS). The studies of the isotope composition of other elements yielded relative accuracy and precision at the per mill level too, with characteristic instrument parameters for each element. The relative accuracy and precision of the measurements is degrading with lower element/isotope concentration in a sample. For the elements with abundances below 100 ppm these values drop to the percent level. Depending on the isotopic abundances of Pb in minerals, 207Pb/206Pb ages with accuracy in the range of tens of millions of years can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cadmium is a highly volatile element and its abundance in meteorites may help better understand volatility-controlled processes in the solar nebula and on meteorite parent bodies. The large thermal neutron capture cross section of 113Cd suggests that Cd isotopes might be well suited to quantify neutron fluences in extraterrestrial materials. The aims of this study were (1) to evaluate the range and magnitude of Cd concentrations in magmatic iron meteorites, and (2) to assess the potential of Cd isotopes as a neutron dosimeter for iron meteorites. Our new Cd concentration data determined by isotope dilution demonstrate that Cd concentrations in iron meteorites are significantly lower than in some previous studies. In contrast to large systematic variations in the concentration of moderately volatile elements like Ga and Ge, there is neither systematic variation in Cd concentration amongst troilites, nor amongst metal phases of different iron meteorite groups. Instead, Cd is strongly depleted in all iron meteorite groups, implying that the parent bodies accreted well above the condensation temperature of Cd (i.e., ≈650 K) and thus incorporated only minimal amounts of highly volatile elements. No Cd isotope anomalies were found, whereas Pt and W isotope anomalies for the same iron meteorite samples indicate a significant fluence of epithermal and higher energetic neutrons. This observation demonstrates that owing to the high Fe concentrations in iron meteorites, neutron capture mainly occurs at epithermal and higher energies. The combined Cd-Pt-W isotope results from this study thus demonstrate that the relative magnitude of neutron capture-induced isotope anomalies is strongly affected by the chemical composition of the irradiated material. The resulting low fluence of thermal neutrons in iron meteorites and their very low Cd concentrations make Cd isotopes unsuitable as a neutron dosimeter for iron meteorites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents an integrated mineralogical-geochemical data base on fine-grained sediments transported by all major rivers of southern Africa, including the Zambezi, Okavango, Limpopo, Olifants, Orange and Kunene. Clay mineralogy, bulk geochemistry, Sr and Nd isotopic signatures of river mud, considered as proxy of suspended load, are used to investigate the influence of source-rock lithology and weathering intensity on the composition of clay and silt produced in subequatorial to subtropical latitudes. Depletion in mobile alkali and alkaline-earth metals, minor in arid Namibia, is strong in the Okavango, Kwando and Upper Zambezi catchments, where recycling is also extensive. Element removal is most significant for Na, and to a lesser extent for Sr. Depletion in K, Ca and other elements, negligible in Namibia, is moderate elsewhere. The most widespread clay minerals are smectite, dominant in muds derived from Karoo or Etendeka flood basalts, or illite and chlorite, dominant in muds derived from metasedimentary rocks of the Damara Orogen or Zimbabwe Craton. Kaolinite represents 30-40% of clay minerals only in Okavango and Upper Zambezi sediments sourced in humid subequatorial Angola and Zambia. After subtracting the effects of recycling and of local accumulation of authigenic carbonates in soils, the regional distribution of clay minerals and chemical indices consistently reflect weathering intensity primarily controlled by climate. Bulk geochemistry identifies most clearly volcaniclastic sediments and mafic sources in general, but cannot discriminate the other sources of detritus in detail. Instead, Sr and Nd isotopic fingerprints are insensitive to weathering, and thus mirror faithfully the tectonic structure of the southern African continent. Isotopic tools thus represent a much firmer basis than bulk geochemistry or clay mineralogy in the provenance study of mudrocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thorium and rare-earth element (Th-REE) deposit at Morro do Ferro formed under supergene lateritic weathering conditions. The ore body consists of shallow NW-SE elongated argillaceous lenses that extend from the top of the hill downwards along its south-eastern slope. The deposit is capped by a network of magnetite layers which protected the underlying highly weathered, argillaceous host rock from excessive erosion. The surrounding country rocks comprise a sequence of subvolcanic phonolite intrusions that have been strongly altered by hydrothermal and supergene processes. From petrological, mineralogical and geochemical studies, and mass balance calculations, it is inferred that the highly weathered host rock was originally carbonatitic in composition, initially enriched in Th and REEs compared to the surrounding silicate rocks. The intrusion of the carbonatite caused fenitic alteration in the surrounding phonolites, consisting of early potassic alteration followed by a vein-type Th-REE mineralization with associated fluorite, carbonate, pyrite and zircon. Subsequent weathering has completely decomposed the carbonatite forming a residual supergene enrichment of Th and REEs. Initial weathering of the carbonatite has created a chemical environment that might have been conductive to carbonate and phosphate complexing of the REEs in groundwaters. This may have appreciably restricted the dissolution of primary REE phases. Strongly oxidic weathering has resulted in a fractionation between Ce and the other light rare earth elements (LREEs). Ce3+ is oxidized to Ce4+ and retained together with Th by secondary mineral formation (cerianite, thorianite), and by adsorption on poorly crystalline iron- and aluminium-hydroxides. In contrast, the trivalent LREEs are retained to a lesser degree and are thus more available for secondary mineral formation (Nd-lanthanite) and adsorption at greater depths down the weathering column. Seasonally controlled fluctuations of recharge waters into the weathering column may help to explain the observed repetition of Th-Ce enriched zones underlain by trivalent LREE enriched zones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely accepted that stabilization of the continental crust requires the presence of sub-continental lithospheric mantle. However, the degree of melt depletion required to stabilize the lithosphere and whether widespread refertilization is a significant process remain unresolved. Here, major and trace element, including platinum group elements (PGE), characterization of 40 mantle xenoliths from 13 localities is used to constrain the melt depletion, refertilization and metasomatic history of lithospheric mantle underneath the micro-continent Zealandia. Our previously published Re–Os isotopic data for a subset of these xenoliths indicate Phanerozoic to Paleoproterozoic ages and, reinterpreted with the new major and trace element data presented here, demonstrate that a large volume (>2 million km3) of lithospheric mantle with an age of 1·99 ± 0·21 Ga is present below the much younger crust of Zealandia. A peritectic melting model using moderately incompatible trace elements (e.g. Yb) in bulk-rocks demonstrates that these peridotites experienced a significant range of degrees of partial melting, between 3 and 28%. During subsolidus equilibration clinopyroxene gains significant rare earth elements (REE), which then leads to the underestimation of the degree of partial melting by ≤12% in fertile xenoliths. A new approach taking into account the effects of subsolidus re-equilibration on clinopyroxene composition effectively removes discrepancies in the calculated degree of melting and provides consistent estimates of between 4 and 29%. The estimated amount of melting is independent of the Re–Os model ages of the samples. The PGE patterns record simple melt depletion histories and the retention of primary base metal sulfides in the majority of the xenoliths. A rapid decrease in Pt/IrN observed at c. 1·0 wt % Al2O3 is a direct result of the exhaustion of sulfide in the mantle residue at c. 20–25% partial melting and the inability of Pt to form a stable alloy phase. Major elements preserve evidence for refertilization by a basaltic component that resulted in the formation of secondary clinopyroxene and low-forsterite olivine. The majority of xenoliths show the effects of cryptic metasomatic overprinting, ranging from minor to strong light REE enrichments in bulk-rocks (La/YbN = 0·16–15·9). Metasomatism is heterogeneous, with samples varying from those with weak REE enrichment and notable positive Sr and U–Th anomalies and negative Nb–Ta anomalies in clinopyroxene to those that have extremely high concentrations of REE, Th–U and Nb. Chemical compositions are consistent with a carbonatitic component contributing to the metasomatism of the lithosphere under Zealandia. Notably, the intense metasomatism of the samples did not affect the PGE budget of the peridotites as this was controlled by residual sulfides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. The main goal of this work is to study element ratios that are important for the formation of planets of different masses. Methods. We study potential correlations between the existence of planetary companions and the relative elemental abundances of their host stars. We use a large sample of FGK-type dwarf stars for which precise Mg, Si, and Fe abundances have been derived using HARPS high-resolution and high-quality data. Results. A first analysis of the data suggests that low-mass planet host stars show higher [Mg/Si] ratios, while giant planet hosts present [Mg/Si] that is lower than field stars. However, we found that the [Mg/Si] ratio significantly depends on metallicity through Galactic chemical evolution. After removing the Galactic evolution trend only the difference in the [Mg/Si] elemental ratio between low-mass planet hosts and non-hosts was present in a significant way. These results suggest that low-mass planets are more prevalent around stars with high [Mg/Si]. Conclusions. Our results demonstrate the importance of Galactic chemical evolution and indicate that it may play an important role in the planetary internal structure and composition. The results also show that abundance ratios may be a very relevant issue for our understanding of planet formation and evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed a suite of sediment samples recovered in the central Arctic Ocean for major, trace, and rare earth elements in order to assess changes in terrigenous source material throughout the Cenozoic. The terrigenous component consists of two end-members. Input from a shale-like composition dominates bulk sediments, especially those deposited during the Paleocene and since the Miocene, and may represent sediment supply from the eastern Laptev Sea. Therefore, even though the environment and transport mechanisms may have varied from ice free to ice dominated, sequences of the early Paleogene and later Neogene appear to have been influenced by a single major terrigenous source. This suggests similar transport capabilities and trajectories for both ocean and drift currents through significant parts of the Cenozoic. Influence from a more mafic source appears to be more important through the early Eocene to the middle Miocene and most likely represents material from the western Laptev Sea or Kara Sea. Thus, Eocene major changes in surface water productivity appear broadly synchronous with those in terrigenous provenance. A combination of regional sea level variations, local shelf processes, and transport mechanisms are among the more probable causes for the observed source changes. Although the assignment of sources using chemistry presently is constrained by a lack of data from certain regions (e.g., eastern Siberian Sea) our results generally agree with inferences based on mineralogy or radiogenic isotopes and shed further light on long-term reconstructions of the central Arctic Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge (Rabinowitz and LaBrecque, 1979 doi:10.1029/JB084iB11p05973, Moore et al. (1983 doi:10.1130/0016-7606(1983)94<907:TWRTDS>2.0.CO;2). The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and coraistent with formation at the paleo mid-ocean ridge (Moore et al., 1983). The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other. The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 207Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high 87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan da Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher 143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing of depleted and enriched end member melts or partial melting of an inhomogeneous, variably enriched mantle source. However, observed Zr-Ba-Nb-Y interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.