915 resultados para Divided islands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Also published as Ch. 9 in Tomorrow's Lawyers (ed. P. Thomas) Oxford: Blackwell 1992. (With M. Fox.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Holocene climates and human impact in the Mediterranean basin have received much attention, but the Maltese Islands in the Central Mediterranean, although a pivotal area, have been little researched. Here, sedimentary and palynological data are presented for three cores from the Holocene coastal and shallowmarine
deposits of the Maltese Islands. These show deforestation from Pinus-Cupressaceae woodland in the early Neolithic, and then a long, but relatively stable history of agriculturally degraded environments to the present day. The major climate events which have affected the Italian and Balkan peninsulas to the
north, and Tunisia to the south, are not reflected in the pollen diagrams from the Maltese Islands because of the strong anthropogenic imprint on the Maltese vegetation from early in the Neolithic. Previous suggestions of environmentally-driven agricultural collapse at the end of the Neolithic appear, however,
to be substantiated and may be linked to regional aridification around 4300 cal. BP. Depopulation in early Medieval times is not supported by the current palynological evidence.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burning seaweed to produce kelp, valued for its high potash and soda content, was formerly a significant industry in remote coastal areas of Scotland and elsewhere. Given the high concentrations of arsenic in seaweeds, up to 100 mg kg(-1), this study investigates the possibility that the kelp industry caused arsenic contamination of these pristine environments. A series of laboratory-scale seaweed burning experiments was conducted, and analysis of the products using HPLC ICP-MS shows that at least 40% of the arsenic originally in the seaweed could have been released into the fumes. The hypothesis that the burning process transforms arsenic from low toxicity arsenosugars in the original seaweeds (Fucus vesiculosus and Laminaria digitata) to highly toxic inorganic forms, predominantly arsenate, is consistent with As speciation analysis results. A field study conducted on Westray, Orkney, once a major centre for kelp production, shows that elevated arsenic levels (10.7+/-3.0 mg kg(-1), compared to background levels of 1.7+/-0.2 mg kg(-1)) persist in soils in the immediate vicinity of the kelp burning pits. A model combining results from the burning experiments with data from historical records demonstrates the potential for arsenic deposition of 47 g ha(-1) year(-1) on land adjacent to the main kelp burning location on Westray, and for arsenic concentrations exceeding current UK soil guideline values during the 50 year period of peak kelp production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stakeholder participation is advanced as a key element of marine spatial planning (MSP) by the U.S. Interagency Ocean Policy Task Force. It provides little guidance, however, regarding stakeholder participation. We argue that much can be learned from existing ecosystem-based marine management initiatives. The Channel Islands National Marine Sanctuary, which utilizes an advisory council to facilitate stakeholder participation, is evaluated in this article with a view to identifying key lessons for new MSP initiatives. A set of criteria, derived from collaborative planning theory, is employed to evaluate the effectiveness of this approach. The advisory council meets some criteria for effective stakeholder participation but is found to be lacking in key elements, including shared purpose and interdependency. Benefits associated with stakeholder participation are constrained accordingly. Deficiencies in the design of the council and its decision-making procedures, requiring attention in order to facilitate more effective stakeholder participation in new MSP initiatives, are highlighted. © 2012 Copyright Taylor and Francis Group, LLC.