909 resultados para Distributed parameter networks
Resumo:
A real-time adaptive resource allocation algorithm considering the end user's Quality of Experience (QoE) in the context of video streaming service is presented in this work. An objective no-reference quality metric, namely Pause Intensity (PI), is used to control the priority of resource allocation to users during the scheduling process. An online adjustment has been introduced to adaptively set the scheduler's parameter and maintain a desired trade-off between fairness and efficiency. The correlation between the data rates (i.e. video code rates) demanded by users and the data rates allocated by the scheduler is taken into account as well. The final allocated rates are determined based on the channel status, the distribution of PI values among users, and the scheduling policy adopted. Furthermore, since the user's capability varies as the environment conditions change, the rate adaptation mechanism for video streaming is considered and its interaction with the scheduling process under the same PI metric is studied. The feasibility of implementing this algorithm is examined and the result is compared with the most commonly existing scheduling methods.
Resumo:
In the paper, an ontogenic artificial neural network (ANNs) is proposed. The network uses orthogonal activation functions that allow significant reducing of computational complexity. Another advantage is numerical stability, because the system of activation functions is linearly independent by definition. A learning procedure for proposed ANN with guaranteed convergence to the global minimum of error function in the parameter space is developed. An algorithm for structure network structure adaptation is proposed. The algorithm allows adding or deleting a node in real-time without retraining of the network. Simulation results confirm the efficiency of the proposed approach.
Resumo:
The problem of multi-agent routing in static telecommunication networks with fixed configuration is considered. The problem is formulated in two ways: for centralized routing schema with the coordinator-agent (global routing) and for distributed routing schema with independent agents (local routing). For both schemas appropriate Hopfield neural networks (HNN) are constructed.
Resumo:
The present paper is devoted to creation of cryptographic data security and realization of the packet mode in the distributed information measurement and control system that implements methods of optical spectroscopy for plasma physics research and atomic collisions. This system gives a remote access to information and instrument resources within the Intranet/Internet networks. The system provides remote access to information and hardware resources for the natural sciences within the Intranet/Internet networks. The access to physical equipment is realized through the standard interface servers (PXI, CАМАC, and GPIB), the server providing access to Ethernet devices, and the communication server, which integrates the equipment servers into a uniform information system. The system is used to make research task in optical spectroscopy, as well as to support the process of education at the Department of Physics and Engineering of Petrozavodsk State University.
Resumo:
In recent years, there has been an increas-ing interest in learning a distributed rep-resentation of word sense. Traditional context clustering based models usually require careful tuning of model parame-ters, and typically perform worse on infre-quent word senses. This paper presents a novel approach which addresses these lim-itations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned represen-tations outperform the publicly available embeddings on 2 out of 4 metrics in the word similarity task, and 6 out of 13 sub tasks in the analogical reasoning task.
Resumo:
Location estimation is important for wireless sensor network (WSN) applications. In this paper we propose a Cramer-Rao Bound (CRB) based analytical approach for two centralized multi-hop localization algorithms to get insights into the error performance and its sensitivity to the distance measurement error, anchor node density and placement. The location estimation performance is compared with four distributed multi-hop localization algorithms by simulation to evaluate the efficiency of the proposed analytical approach. The numerical results demonstrate the complex tradeoff between the centralized and distributed localization algorithms on accuracy, complexity and communication overhead. Based on this analysis, an efficient and scalable performance evaluation tool can be designed for localization algorithms in large scale WSNs, where simulation-based evaluation approaches are impractical. © 2013 IEEE.
Resumo:
We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.
Resumo:
We review recent advances in all-optical OFDM technologies and discuss the performance of a field trial of a 2 Tbit/s Coherent WDM over 124 km with distributed Raman amplification. The results indicate that careful optimisation of the Raman pumps is essential. We also consider how all-optical OFDM systems perform favourably against energy consumption when compared with alternative coherent detection schemes. We argue that, in an energy constrained high-capacity transmission system, direct detected all-optical OFDM with `ideal' Raman amplification is an attractive candidate for metro area datacentre interconnects with ~100 km fibre spans, with an overall energy requirement at least three times lower than coherent detection techniques.
Resumo:
When visual sensor networks are composed of cameras which can adjust the zoom factor of their own lens, one must determine the optimal zoom levels for the cameras, for a given task. This gives rise to an important trade-off between the overlap of the different cameras’ fields of view, providing redundancy, and image quality. In an object tracking task, having multiple cameras observe the same area allows for quicker recovery, when a camera fails. In contrast having narrow zooms allow for a higher pixel count on regions of interest, leading to increased tracking confidence. In this paper we propose an approach for the self-organisation of redundancy in a distributed visual sensor network, based on decentralised multi-objective online learning using only local information to approximate the global state. We explore the impact of different zoom levels on these trade-offs, when tasking omnidirectional cameras, having perfect 360-degree view, with keeping track of a varying number of moving objects. We further show how employing decentralised reinforcement learning enables zoom configurations to be achieved dynamically at runtime according to an operator’s preference for maximising either the proportion of objects tracked, confidence associated with tracking, or redundancy in expectation of camera failure. We show that explicitly taking account of the level of overlap, even based only on local knowledge, improves resilience when cameras fail. Our results illustrate the trade-off between maintaining high confidence and object coverage, and maintaining redundancy, in anticipation of future failure. Our approach provides a fully tunable decentralised method for the self-organisation of redundancy in a changing environment, according to an operator’s preferences.
Resumo:
In this paper, we describe recent architectural and technological advances of the end to end optical network architecture proposed by the DISCUS project (the DIStributed Core for unlimited bandwidth supply for all Users and Services). The two main targets of DISCUS are the principle of equivalence in the access and the reduction of optical-to-electronic conversions in the metro-core network. Technological advances and techno-economic evaluation of Long-Reach Passive Optical Networks (LR-PON), as well as the optimal metro-core node architecture and the required network control plane framework are reported. Network infrastructure sharing challenges are also discussed. © 2014 IEEE.
Resumo:
With the advent of GPS enabled smartphones, an increasing number of users is actively sharing their location through a variety of applications and services. Along with the continuing growth of Location-Based Social Networks (LBSNs), security experts have increasingly warned the public of the dangers of exposing sensitive information such as personal location data. Most importantly, in addition to the geographical coordinates of the user’s location, LBSNs allow easy access to an additional set of characteristics of that location, such as the venue type or popularity. In this paper, we investigate the role of location semantics in the identification of LBSN users. We simulate a scenario in which the attacker’s goal is to reveal the identity of a set of LBSN users by observing their check-in activity. We then propose to answer the following question: what are the types of venues that a malicious user has to monitor to maximize the probability of success? Conversely, when should a user decide whether to make his/her check-in to a location public or not? We perform our study on more than 1 million check-ins distributed over 17 urban regions of the United States. Our analysis shows that different types of venues display different discriminative power in terms of user identity, with most of the venues in the “Residence” category providing the highest re-identification success across the urban regions. Interestingly, we also find that users with a high entropy of their check-ins distribution are not necessarily the hardest to identify, suggesting that it is the collective behaviour of the users’ population that determines the complexity of the identification task, rather than the individual behaviour.
Resumo:
We develop a simplified implementation of the Hoshen-Kopelman cluster counting algorithm adapted for honeycomb networks. In our implementation of the algorithm we assume that all nodes in the network are occupied and links between nodes can be intact or broken. The algorithm counts how many clusters there are in the network and determines which nodes belong to each cluster. The network information is stored into two sets of data. The first one is related to the connectivity of the nodes and the second one to the state of links. The algorithm finds all clusters in only one scan across the network and thereafter cluster relabeling operates on a vector whose size is much smaller than the size of the network. Counting the number of clusters of each size, the algorithm determines the cluster size probability distribution from which the mean cluster size parameter can be estimated. Although our implementation of the Hoshen-Kopelman algorithm works only for networks with a honeycomb (hexagonal) structure, it can be easily changed to be applied for networks with arbitrary connectivity between the nodes (triangular, square, etc.). The proposed adaptation of the Hoshen-Kopelman cluster counting algorithm is applied to studying the thermal degradation of a graphene-like honeycomb membrane by means of Molecular Dynamics simulation with a Langevin thermostat. ACM Computing Classification System (1998): F.2.2, I.5.3.
Resumo:
This paper discusses the potentiality of reconfiguring distribution networks into islanded Microgrids to reduce the network infrastructure reinforcement requirement and incorporate various dispersed energy resources. The major challenge would be properly breaking down the network and its resultant protection and automation system changes. A reconfiguration method is proposed based on allocation of distributed generation resources to fulfil this purpose, with a heuristic algorithm. Cost/reliability data is required for the next stage tasks to realise a case study of a particular network.
Resumo:
In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.
Resumo:
Computational and communication complexities call for distributed, robust, and adaptive control. This paper proposes a promising way of bottom-up design of distributed control in which simple controllers are responsible for individual nodes. The overall behavior of the network can be achieved by interconnecting such controlled loops in cascade control for example and by enabling the individual nodes to share information about data with their neighbors without aiming at unattainable global solution. The problem is addressed by employing a fully probabilistic design, which can cope with inherent uncertainties, that can be implemented adaptively and which provide a systematic rich way to information sharing. This paper elaborates the overall solution, applies it to linear-Gaussian case, and provides simulation results.