962 resultados para Dissolution sélective


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays growing number of new active pharmaceutical ingredients (API) have large molecular weight and are hydrophobic. The energy of their crystal lattice is bigger and polarity has decreased. This leads to weakened solubility and dissolution rate of the drug. These properties can be enhanced for example by amorphization. Amorphous form has the best dissolution rate in the solid state. In the amorphous form drug molecules are randomly arranged, so the energy required to dissolve molecules is lower compared to the crystalline counterpart. The disadvantage of amorphous form is that it is unstable. Amorphous form tends to crystallize. Stability of amorphous form can be enhanced by adding an adjuvant to drug product. Adjuvant is usually a polymer. Polymers prevent crystallization both by forming bonds with API molecules and by steric hindrance. The key thing in stabilizing amorphous form is good miscibility between API and polymer. They have to be mixed in a molecular level so that the polymer is able to prevent crystallization. The aim of this work was to study miscibility of drug and polymer and stability of their dispersion with different analytical methods. Amorphous dispersions were made by rotary evaporator and freeze dryer. Amorphicity was confirmed with X-ray powder diffraction (XRPD) right after preparation. Itraconazole and theophylline were the chosen molecules to be stabilized. Itraconazole was expected to be easier and theophylline more difficult to stabilize. Itraconazole was stabilized with HPMC and theophylline was stabilized with PVP. Miscibility was studied with XRPD and differential scanning calorimetry (DSC). In addition it was studied with polarized light microscope if miscibility was possible to see visually. Dispersions were kept in stressed conditions and the crystallization was analyzed with XRPD. Stability was also examined with isothermal microcalorimetry (IMC). The dispersion of itraconazole and theophylline 40/60 (w/w) was completely miscible. It was proved by linear combination of XRPD results and single glass transition temperature in DSC. Homogenic well mixed film was observed with light microscope. Phase separation was observed with other compositions. Dispersions of theophylline and PVP mixed only partly. Stability of itraconazole dispersions were better than theophylline dispersions which were mixed poorer. So miscibility was important thing considering stability. The results from isothermal microcalorimetry were similar to results from conventional stability studies. Complementary analytical methods should be used when studying miscibility so that the results are more reliable. Light microscope is one method in addition to mostly used XRPD and DSC. Analyzing light microscope photos is quite subjective but it gives an idea of miscibility. Isothermal microcalorimetry can be one option for conventional stability studies. If right conditions can be made where the crystallization is not too fast, it may be possible to predict stability with isothermal microcalorimetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the chemical weathering processes and fluxes in a small experimental watershed (SEW) through a modelling approach. The study site is the Mule Hole SEW developed on a gneissic basement located in the climatic gradient of the Western Ghats, South India. The model couples a lumped hydrological model simulating the water budget at the watershed scale to the WITCH model estimating the dissolution/precipitation rates of minerals using laboratory kinetic laws. Forcing functions and parameters of the simulation are defined by the field data. The coupled model is calibrated with stream and groundwater compositions through the testing of a large range of smectite solubility and abundance in the soil horizons. We found that, despite the low abundance of smectite in the dominant soil type of the watershed (4 vol.%), their net dissolution provides 75% of the export of dissolved silica, while primary silicate mineral dissolution releases only 15% of this flux. Overall, smectites (modelled as montmorillonites) are not stable under the present day climatic conditions. Furthermore, the dissolution of trace carbonates in the saprolitic horizon provides 50% of the calcium export at the watershed scale. Modelling results show the contrasted behavior of the two main soil types of the watershed: red soils (88% of the surface) are provider of calcium, while black soils (smectite-rich and characterized by a lower drainage) consumes calcium through overall carbonate precipitation. Our model results stress the key role played by minor/accessory minerals and by the thermodynamic properties of smectite minerals, and by the drainage of the weathering profiles on the weathering budget of a tropical watershed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we analyze how the ion concentrations in forest soil solution are determined by hydrological and biogeochemical processes. A dynamic model ACIDIC was developed, including processes common to dynamic soil acidification models. The model treats up to eight interacting layers and simulates soil hydrology, transpiration, root water and nutrient uptake, cation exchange, dissolution and reactions of Al hydroxides in solution, and the formation of carbonic acid and its dissociation products. It includes also a possibility to a simultaneous use of preferential and matrix flow paths, enabling the throughfall water to enter the deeper soil layers in macropores without first reacting with the upper layers. Three different combinations of routing the throughfall water via macro- and micropores through the soil profile is presented. The large vertical gradient in the observed total charge was simulated succesfully. According to the simulations, gradient is mostly caused by differences in the intensity of water uptake, sulfate adsorption and organic anion retention at the various depths. The temporal variations in Ca and Mg concentrations were simulated fairly well in all soil layers. For H+, Al and K there were much more variation in the observed than in the simulated concentrations. Flow in macropores is a possible explanation for the apparent disequilibrium of the cation exchange for H+ and K, as the solution H+ and K concentrations have great vertical gradients in soil. The amount of exchangeable H+ increased in the O and E horizons and decreased in the Bs1 and Bs2 horizons, the net change in whole soil profile being a decrease. A large part of the decrease of the exchangeable H+ in the illuvial B horizon was caused by sulfate adsorption. The model produces soil water amounts and solution ion concentrations which are comparable to the measured values, and it can be used in both hydrological and chemical studies of soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of liquid Al–Mg–Si alloys at 900–1400 °C was studied by thermogravimetric analysis (TGA). The development of a semi-protective surface layer of MgO/MgAl2O4 allows the continuous formation of an Al2O3-matrix composite containing an interpenetrating network of metal microchannels at 1000–1350 °C. An initial incubation period precedes bulk oxidation, wherein Al2O3 grows from a near-surface alloy layer by reaction of oxygen supplied by the dissolution of the surface oxides and Al supplied from a bulk alloy reservoir through the microchannel network. The typical oxidation rate during bulk growth displays an initial acceleration followed by a parabolic deceleration in a regime apparently limited by Al transport to the near-surface layer. Both regimes may be influenced by the Si content in this layer, which rises due to preferential Al and Mg oxidation. The growth rates increase with temperature to a maximum at ~1300 °C, with a nominal activation energy of 270 kJ/mole for an Al-2.85 wt. % Mg-5.4 wt. % Si alloy in O2 at furnace temperatures of 1000–1300 °C. An oscillatory rate regime observed at 1000–1075 °C resulted in a banded structure of varying Al2O3-to-metal volume fraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Use of natural xanthine derivates in medicine is complicated with their physical properties. Theobromine is poorly soluble while theophylline is highly sensitive to hydration. The aim of this study was to improve bioavailability of xanthines by co-crystallization, theophylline was also cocrystallized with carboxylic acids (capric, citric, glutaric, malenic, malonic, oxalic, stearic, succinic) and HPMC. Co-crystallization was performed by slow evaporation and ball milling. Physical stability was checked by wet granulation and water sorption methods, solubility was measured by intrinsic tablet dissolution. Theobromine formed co-crystal with other xanthines and theophylline interacted with all acids except stearic and HPMC, the latter showed alternative interactions based on hydrogen bonding. Hydration resistance was good in theophylline:succinic acid co-crystal and excellent in complexes containing capric, stearic acids and HPMC. Theophylline:HPMC showed improved solubility. The reported approach can promote use of xanthines and can be recommended for other compounds with similar problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of holographic interferometry to the measurement of the corrosion rate of aluminium in sodium hydroxide is investigated. Details of the fabrication of the corrosion cell and the experimental procedure are given. Thickness loss of aluminium was found for different dissolution times and compared with the conventional weight-loss method using a microbalance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3% Mg and Al-3% Mg-3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New chemical entities with unfavorable water solubility properties are continuously emerging in drug discovery. Without pharmaceutical manipulations inefficient concentrations of these drugs in the systemic circulation are probable. Typically, in order to be absorbed from the gastrointestinal tract, the drug has to be dissolved. Several methods have been developed to improve the dissolution of poorly soluble drugs. In this study, the applicability of different types of mesoporous (pore diameters between 2 and 50 nm) silicon- and silica-based materials as pharmaceutical carriers for poorly water soluble drugs was evaluated. Thermally oxidized and carbonized mesoporous silicon materials, ordered mesoporous silicas MCM-41 and SBA-15, and non-treated mesoporous silicon and silica gel were assessed in the experiments. The characteristic properties of these materials are the narrow pore diameters and the large surface areas up to over 900 m²/g. Loading of poorly water soluble drugs into these pores restricts their crystallization, and thus, improves drug dissolution from the materials as compared to the bulk drug molecules. In addition, the wide surface area provides possibilities for interactions between the loaded substance and the carrier particle, allowing the stabilization of the system. Ibuprofen, indomethacin and furosemide were selected as poorly soluble model drugs in this study. Their solubilities are strongly pH-dependent and the poorest (< 100 µg/ml) at low pH values. The pharmaceutical performance of the studied materials was evaluated by several methods. In this work, drug loading was performed successfully using rotavapor and fluid bed equipment in a larger scale and in a more efficient manner than with the commonly used immersion methods. It was shown that several carrier particle properties, in particular the pore diameter, affect the loading efficiency (typically ~25-40 w-%) and the release rate of the drug from the mesoporous carriers. A wide pore diameter provided easier loading and faster release of the drug. The ordering and length of the pores also affected the efficiency of the drug diffusion. However, these properties can also compensate the effects of each other. The surface treatment of porous silicon was important in stabilizing the system, as the non-treated mesoporous silicon was easily oxidized at room temperature. Different surface chemical treatments changed the hydrophilicity of the porous silicon materials and also the potential interactions between the loaded drug and the particle, which further affected the drug release properties. In all of the studies, it was demonstrated that loading into mesoporous silicon and silica materials improved the dissolution of the poorly soluble drugs as compared to the corresponding bulk compounds (e.g. after 30 min ~2-7 times more drug was dissolved depending on the materials). The release profile of the loaded substances remained similar also after 3 months of storage at 30°C/56% RH. The thermally carbonized mesoporous silicon did not compromise the Caco-2 monolayer integrity in the permeation studies and improved drug permeability was observed. The loaded mesoporous silica materials were also successfully compressed into tablets without compromising their characteristic structural and drug releasing properties. The results of this research indicated that mesoporous silicon/silica-based materials are promising materials to improve the dissolution of poorly water soluble drugs. Their feasibility in pharmaceutical laboratory scale processes was also confirmed in this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of applied DC potentials on the activity and growth of Thiobacillus ferrooxidans, as well as on the dissolution behaviour of some base metal sulphides is discussed with reference to bioleaching. Selective bioleaching of zinc from sphalerite could be achieved under an applied potential of −500 mV (saturated calomel electrode) from binary mineral mixtures containing the zinc mineral and chalcopyrite or pyrite. On the other hand, bioleaching of pyrite and chalcopyrite was found to be enhanced under positive potentials of +400 mV and +600 mV, respectively. Probable mechanisms in the electrobioleaching of sulphides are examined with respect to galvanic, microbiological and applied potential effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioleaching of base metal sulfides, such as pyrite, chalcopyrite, and sphalerite, under the influence of applied direct current (DC) potentials is discussed. Contributions toward mineral dissolution from three effects, namely, galvanic, applied potential, and microbiological, are analyzed and compared. Sphalerite could be selectively bioleached in the presence of Thiobacillus ferrooxidans under an applied potential of -500 mV (SCE) from mixed sulfides containing sphalerite, pyrite, and chalcopyrite. Bacterial activity and growth were found to be promoted under electrobioleaching conditions. Probable mechanisms involved in the bioleaching of different sulfides under positive and negative applied potentials are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several of the newly developed drug molecules experience poor biopharmaceutical behavior, which hinders their effective delivery at the proper site of action. Among the several strategies employed in order to overcome this obstacle, mesoporous silicon-based materials have emerged as promising drug carriers due to their ability to improve the dissolution behavior of several poorly water-soluble drugs compounds confined within their pores. In addition to improve the dissolution behavior of the drugs, we report that porous silicon (PSi) nanoparticles have a higher degree of biocompatibility than PSi microparticles in several cell lines studied. In addition, the degradation of the nanoparticles showed its potential to fast clearance in the body. After oral delivery, the PSi particles were also found to transit the intestines without being absorbed. These results constituted the first quantitative analysis of the behavior of orally administered PSi nanoparticles compared with other delivery routes in rats. The self-assemble of a hydrophobin class II (HFBII) protein at the surface of hydrophobic PSi particles endowed the particles with greater biocompatibility in different cell lines, was found to reverse their hydrophobicity and also protected a drug loaded within its pores against premature release at low pH while enabling subsequent drug release as the pH increased. These results highlight the potential of HFBII-coating for PSi-based drug carriers in improving their hydrophilicity, biocompatibility and pH responsiveness in drug delivery applications. In conclusion, mesoporous silicon particles have been shown to be a versatile platform for improving the dissolution behavior of poorly water-soluble drugs with high biocompatibility and easy surface modification. The results of this study also provide information regarding the biofunctionalization of the THCPSi particles with a fungal protein, leading to an improvement in their biocompatibility and endowing them with pH responsive and mucoadhesive properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equilibrium of dissolution of sulfur dioxide at ppm levels in aqueous solutions of dilute sulfuric acid is analyzed, and a general expression is derived relating the total concentration of sulfur dioxide in the liquid phase to the partial pressure of SO2 in the gas and to the concentration of sulfuric acid in the solution. The equation is simplified for zero and high concentrations of the acid. Experiments at high concentrations of sulfuric acid have enabled the direct determination of Henry’s constant and its dependency on temperature. Heat of dissolution is -31.47 kJ/mol. Experiments in the absence of sulfuric acid and the related simplified expression have led to the determination of the equilibrium constant of the hydrolysis of aqueous sulfur dioxide and its temperature dependency.The heat of hydrolysis is 15.69 kJ/mol. The model equation with these parameters predicts the experimental data of the present work as well as the reported data very well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five compounds, viz. 1,1'-ferrocenediyldiethylidene bis(thiocarbonohydrazide) (DAFT), 1,1-diacetylferrocene disemicarbazone (DAFS), 1,1-diacetylferrocenebenzoyl hydrazone (FDBAH), 1,1-diacetylferrocene-p-nitrobenzoyl hydrazone (FDNBAH), and p-toluenesulfonic acid 1,1'-ferrocenediyldiethylidene dihydrazide (TFDD) were found to be bonding agents as well as burning-rate modifiers for the ammonium perchlorate + hydroxy-terminated polybutadiene system. The tensile strength and percentage elongation significantly increased in the presence of these bonding agents (except FDBAH). The bonding agents generally did not adversely affect the slurry viscosity during processing. The bonding sites were located by infrared spectroscopy, supported by determination of the dissolution kinetics of the bonding agents and scanning electron microscopy. The bonding agents did not undergo any side-reactions with the curing agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five compounds, viz. 1,1'-ferrocenediyldiethylidene bis(thiocarbonohydrazide) (DAFT), 1,1-diacetylferrocene disemicarbazone (DAFS), 1,1-diacetylferrocenebenzoyl hydrazone (FDBAH), 1,1-diacetylferrocene-p-nitrobenzoyl hydrazone (FDNBAH), and p-tolenesulfonic acid, 1,1'-ferrocenediyldiethylidene dihydrazide (TFDD) were found to be bonding agents as well as burning-rate modifiers for the ammonium perchlorate + hydroxy-terminated polybutadiene system. The tensile strength and percentage elongation significantly increased in the presence of these bonding agents (except FDBAH). The bonding agents generally did not adversely affect the slurry viscosity during processing. The bonding sites were located by infrared spectroscopy, supported by determination of the dissolution kinetics of the bonding agents and scanning electron microscopy. The bonding agents did not undergo any side-reactions with the curing agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hot deformation characteristics of IN 600 nickel alloy are studied using hot compression testing in the temperature range 850-1200-degrees-C and strain rate range 0.001-100 s-1. A processing map for hot working is developed on the basis of the data obtained, using the principles of dynamic materials modelling. The map exhibits a single domain with a peak efficiency of power dissipation of 48% occurring at 1200-degrees-C and 0.2 s-1, at which the material undergoes dynamic recrystallisation (DRX). These are the optimum conditions for hot working of IN 600. At strain rates higher than 1 s-1, the material exhibits flow localisation and its microstructure consists of localised bands of fine recrystallised grains. The presence of iron in the Ni-Cr alloy narrows the DRX domain owing to a higher temperature required for carbide dissolution, which is essential for the occurrence of DRX. The efficiency of DRX in Ni-Cr is, however, enhanced by iron addition.