881 resultados para Discrete wavelet transform
Resumo:
The key aspect limiting resolution in crosswell traveltime tomography is illumination, a well known result but not as well exemplified. Resolution in the 2D case is revisited using a simple geometric approach based on the angular aperture distribution and the Radon Transform properties. Analitically it is shown that if an interface has dips contained in the angular aperture limits in all points, it is correctly imaged in the tomogram. By inversion of synthetic data this result is confirmed and it is also evidenced that isolated artifacts might be present when the dip is near the illumination limit. In the inverse sense, however, if an interface is interpretable from a tomogram, even an aproximately horizontal interface, there is no guarantee that it corresponds to a true interface. Similarly, if a body is present in the interwell region it is diffusely imaged in the tomogram, but its interfaces - particularly vertical edges - can not be resolved and additional artifacts might be present. Again, in the inverse sense, there is no guarantee that an isolated anomaly corresponds to a true anomalous body because this anomaly can also be an artifact. Jointly, these results state the dilemma of ill-posed inverse problems: absence of guarantee of correspondence to the true distribution. The limitations due to illumination may not be solved by the use of mathematical constraints. It is shown that crosswell tomograms derived by the use of sparsity constraints, using both Discrete Cosine Transform and Daubechies bases, basically reproduces the same features seen in tomograms obtained with the classic smoothness constraint. Interpretation must be done always taking in consideration the a priori information and the particular limitations due to illumination. An example of interpreting a real data survey in this context is also presented.
Resumo:
This paper is on the use and performance of M-path polyphase Infinite Impulse Response (IIR) filters for channelisation, conventionally where Finite Impulse Response (FIR) filters are preferred. This paper specifically focuses on the Discrete Fourier Transform (DFT) modulated filter banks, which are known to be an efficient choice for channelisation in communication systems. In this paper, the low-pass prototype filter for the DFT filter bank has been implemented using an M-path polyphase IIR filter and we show that the spikes present at the stopband can be avoided by making use of the guardbands between narrowband channels. It will be shown that the channelisation performance will not be affected when polyphase IIR filters are employed instead of their counterparts derived from FIR prototype filters. Detailed complexity and performance analysis of the proposed use will be given in this article.
Resumo:
Digital Image Processing is a rapidly evolving eld with growing applications in Science and Engineering. It involves changing the nature of an image in order to either improve its pictorial information for human interpretation or render it more suitable for autonomous machine perception. One of the major areas of image processing for human vision applications is image enhancement. The principal goal of image enhancement is to improve visual quality of an image, typically by taking advantage of the response of human visual system. Image enhancement methods are carried out usually in the pixel domain. Transform domain methods can often provide another way to interpret and understand image contents. A suitable transform, thus selected, should have less computational complexity. Sequency ordered arrangement of unique MRT (Mapped Real Transform) coe cients can give rise to an integer-to-integer transform, named Sequency based unique MRT (SMRT), suitable for image processing applications. The development of the SMRT from UMRT (Unique MRT), forward & inverse SMRT algorithms and the basis functions are introduced. A few properties of the SMRT are explored and its scope in lossless text compression is presented.
Resumo:
Au cours des dernières décennies, l’effort sur les applications de capteurs infrarouges a largement progressé dans le monde. Mais, une certaine difficulté demeure, en ce qui concerne le fait que les objets ne sont pas assez clairs ou ne peuvent pas toujours être distingués facilement dans l’image obtenue pour la scène observée. L’amélioration de l’image infrarouge a joué un rôle important dans le développement de technologies de la vision infrarouge de l’ordinateur, le traitement de l’image et les essais non destructifs, etc. Cette thèse traite de la question des techniques d’amélioration de l’image infrarouge en deux aspects, y compris le traitement d’une seule image infrarouge dans le domaine hybride espacefréquence, et la fusion d’images infrarouges et visibles employant la technique du nonsubsampled Contourlet transformer (NSCT). La fusion d’images peut être considérée comme étant la poursuite de l’exploration du modèle d’amélioration de l’image unique infrarouge, alors qu’il combine les images infrarouges et visibles en une seule image pour représenter et améliorer toutes les informations utiles et les caractéristiques des images sources, car une seule image ne pouvait contenir tous les renseignements pertinents ou disponibles en raison de restrictions découlant de tout capteur unique de l’imagerie. Nous examinons et faisons une enquête concernant le développement de techniques d’amélioration d’images infrarouges, et ensuite nous nous consacrons à l’amélioration de l’image unique infrarouge, et nous proposons un schéma d’amélioration de domaine hybride avec une méthode d’évaluation floue de seuil amélioré, qui permet d’obtenir une qualité d’image supérieure et améliore la perception visuelle humaine. Les techniques de fusion d’images infrarouges et visibles sont établies à l’aide de la mise en oeuvre d’une mise en registre précise des images sources acquises par différents capteurs. L’algorithme SURF-RANSAC est appliqué pour la mise en registre tout au long des travaux de recherche, ce qui conduit à des images mises en registre de façon très précise et des bénéfices accrus pour le traitement de fusion. Pour les questions de fusion d’images infrarouges et visibles, une série d’approches avancées et efficaces sont proposés. Une méthode standard de fusion à base de NSCT multi-canal est présente comme référence pour les approches de fusion proposées suivantes. Une approche conjointe de fusion, impliquant l’Adaptive-Gaussian NSCT et la transformée en ondelettes (Wavelet Transform, WT) est propose, ce qui conduit à des résultats de fusion qui sont meilleurs que ceux obtenus avec les méthodes non-adaptatives générales. Une approche de fusion basée sur le NSCT employant la détection comprime (CS, compressed sensing) et de la variation totale (TV) à des coefficients d’échantillons clairsemés et effectuant la reconstruction de coefficients fusionnés de façon précise est proposée, qui obtient de bien meilleurs résultats de fusion par le biais d’une pré-amélioration de l’image infrarouge et en diminuant les informations redondantes des coefficients de fusion. Une procédure de fusion basée sur le NSCT utilisant une technique de détection rapide de rétrécissement itératif comprimé (fast iterative-shrinking compressed sensing, FISCS) est proposée pour compresser les coefficients décomposés et reconstruire les coefficients fusionnés dans le processus de fusion, qui conduit à de meilleurs résultats plus rapidement et d’une manière efficace.
Resumo:
In this paper, we propose an orthogonal chirp division multiplexing (OCDM) technique for coherent optical communication. OCDM is the principle of orthogonally multiplexing a group of linear chirped waveforms for high-speed data communication, achieving the maximum spectral efficiency (SE) for chirp spread spectrum, in a similar way as the orthogonal frequency division multiplexing (OFDM) does for frequency division multiplexing. In the coherent optical (CO)-OCDM, Fresnel transform formulates the synthesis of the orthogonal chirps; discrete Fresnel transform (DFnT) realizes the CO-OCDM in the digital domain. As both the Fresnel and Fourier transforms are trigonometric transforms, the CO-OCDM can be easily integrated into the existing CO-OFDM systems. Analyses and numerical results are provided to investigate the transmission of CO-OCDM signals over optical fibers. Moreover, experiments of 36-Gbit/s CO-OCDM signal are carried out to validate the feasibility and confirm the analyses. It is shown that the CO-OCDM can effectively compensate the dispersion and is more resilient to fading and noise impairment than OFDM.
Resumo:
Dissertação (mestrado)— Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015.
Resumo:
La actividad cerebral puede ser monitoreada mediante la electroencefalografía y utilizada como un indicador bioeléctrico. Este articulo muestra como un dispositivo de bajo costo y fácil acceso puede utilizarse para el desarrollo de aplicaciones basadas en interfaces cerebro-computador (BCI). Los resultados obtenidos muestran que el dispositivo MindWave puede efectivamente utilizarse para la adquisición de señales relacionadas a la actividad cerebral en diversas actividades cerebrales bajo la influencia de diversos estímulos. Se propone además el uso de la transformada Wavelet para el acondicionamiento de las señales EEG con el objetivo de utilizar algoritmos de inteligencia artificial y técnicas de reconocimiento de patrones para distinguir respuestas cerebrales.
Resumo:
Alzheimer's disease (AD) represents one ofthe greatest public health challenges worldwide nowadays, because it affects millions of people ali o ver the world and it is expected that the disease will increase considerably in the near future. This study is the first application attempt of cepstral analysis on Electroencephalogram (EEG) signals to find new parameters in arder to achieve a better differentiation belween EEGs of AD patients and Control subjects. The results show that the methodology that uses a combined Wavelet (WT) Biorthogonal (Bior) 3.5 and cepstrum analysis was able to describe the EEG dynamics with a higher discriminative power than the other WTs/spectmm methodologies m previous studies. The most important significance figures were found in cepstral distances between cepstrums oftheta and alpha bands (p=0. 00006<0. 05).
Resumo:
Purpose: To evaluate and compare the performance of Ripplet Type-1 transform and directional discrete cosine transform (DDCT) and their combinations for improved representation of MRI images while preserving its fine features such as edges along the smooth curves and textures. Methods: In a novel image representation method based on fusion of Ripplet type-1 and conventional/directional DCT transforms, source images were enhanced in terms of visual quality using Ripplet and DDCT and their various combinations. The enhancement achieved was quantified on the basis of peak signal to noise ratio (PSNR), mean square error (MSE), structural content (SC), average difference (AD), maximum difference (MD), normalized cross correlation (NCC), and normalized absolute error (NAE). To determine the attributes of both transforms, these transforms were combined to represent the entire image as well. All the possible combinations were tested to present a complete study of combinations of the transforms and the contrasts were evaluated amongst all the combinations. Results: While using the direct combining method (DDCT) first and then the Ripplet method, a PSNR value of 32.3512 was obtained which is comparatively higher than the PSNR values of the other combinations. This novel designed technique gives PSNR value approximately equal to the PSNR’s of parent techniques. Along with this, it was able to preserve edge information, texture information and various other directional image features. The fusion of DDCT followed by the Ripplet reproduced the best images. Conclusion: The transformation of images using Ripplet followed by DDCT ensures a more efficient method for the representation of images with preservation of its fine details like edges and textures.
Resumo:
In this thesis, an image enhancement application is developed for low-vision patients when they use iPhones to see images/watch videos. The thesis has two contributions. The first contribution is the new image enhancement algorithm which combines human vision features. The new image enhancement algorithm is modified from a wavelet transform based image enhancement algorithm developed by Dr. Jinshan Tang. Different from the original algorithm, the new image enhancement algorithm combines human visual feature into the algorithm and thus can make the new algorithm more effective. Experimental simulation results show that the proposed algorithm has better visual results than the algorithm without combining visual features. The second contribution of this thesis is the development of a mobile image enhancement application. In this application, users with low-vision can see clearer images on an iPhone which is installed with the application I have developed.
Resumo:
In the field of multiscale analysis of signals, including images, the wavelet transform is one of the most attractive and powerful tool due to its ability to focus on signals structures at different scales. Wavelet Transform at different scales is successfully applied to image characterization (which can be applied to a watermarking scheme) and multiscale singularity detection and processing. In this work we show further research of computation of multifractals properties such as the multifractal spectrum (D(alpha)) applied to dye stained images of natural terrain. This can be useful for statically describing preferential flow path geometry.