851 resultados para Direct effect
Resumo:
Work on Pt-Sn-C catalysts for ethanol oxidation showed that a thermal treatment at moderate temperatures leads to a significant increase in activity. The best activity was observed for Pt3Sn1 thermally treated at 200 degrees C and ascribed to a Pt3Sn1 phase plus a cleaning effect. However, electronic effects may be very important and these were not evaluated in the Pt3Sn1 phase. Therefore, in this work we investigated the effect of the degree of alloy on the electronic structure of Pt3Sn1 electrocatalysts by performing electrochemical in situ X-ray absorption (XAS) experiments in the Pt L-III XANES region. Overall, the results show that although the occupancy of the Pt 5d band depends on the degree of alloy other factors, such as the presence of tin oxides/hydroxides in the materials, have to be considered to understand the performance of the DEFC.
Resumo:
The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH2, PtO2, SnO2 and IrO2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded.
Resumo:
This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH2, PtO2, SnO2 and IrO2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded.
Resumo:
Direct revascularization of a bronchial artery has been proposed as a measure to alleviate the problem of bronchial ischemia after lung transplantation. To assess the effect of restoration of arterial blood flow to the transplanted bronchus, bronchial mucosal blood flow was measured in a model of modified unilateral lung transplantation in pigs. Laser Doppler velocimetry (LDV) and radioisotope studies using radio-labeled erythrocytes (RI) were used to measure blood flow at the donor main carina (DC) and upper lobe carina (DUC) after 3 h of reperfusion. The recipient carina was used as a reference point; values obtained by LDV and RI were expressed as percentage of blood flow at the recipient carina. Two groups of animals were studied. In group 1 (n = 6) standard unilateral transplantation was performed; in group 2 (n = 6) a left bronchial artery was reimplanted into the descending thoracic aorta of the recipient. No differences were observed between the two groups with respect to preoperative or postoperative gas exchange or hemodynamics. In group 1, bronchial blood flow at the DC was 37.6 +/- 2.2% (LDV) and 44.1 +/- 14.8% (RI) of reference blood flow. At the DUC, blood flow was 54.9 +/- 7.7% (LDV) and 61.6 +/- 25.7% (RI) of normal flow. In group 2, blood flow was increased at the DC as measured by LDV (55.3 +/- 17.1%; p less than 0.05) and by RI (60.8 +/- 25.3%; p less than 0.2). A similar increase was found at the DUC (LDV: 81.8 +/- 19.3%; p less than 0.05; RI: 88.6 +/- 31.0%; p less than 0.2). It is concluded that there is a significant gradient of blood flow from intra- to extrapulmonary airways after lung transplantation. Reimplantation of a bronchial artery results in significant improvement of graft bronchial blood flow. Restoration of bronchial perfusion to normal levels, however, cannot be achieved, suggesting a possible defect in the microcirculation of the donor airways.
Resumo:
Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15min on and 15min off) starting 45min after middle cerebral artery occlusion and lasting 4h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans.
Resumo:
We herein present a patient undergoing selective internal radiation therapy with an almost normal lung shunt fraction of 11.5 %, developing histologically proven radiation pneumonitis. Due to a predominance of pulmonary consolidations in the right lower lung and its proximity to a large liver metastases located in the dome of the right liver lobe a Monte Carlo simulation was performed to estimate the effect of direct irradiation of the lung parenchyma. According to our calculations direct irradiation seems negligible and RP is almost exclusively due to ectopic draining of radioactive spheres.
Resumo:
This study examined the effectiveness of discovery learning and direct instruction in a diverse second grade classroom. An assessment test and transfer task were given to students to examine which method of instruction enabled the students to grasp the content of a science lesson to a greater extent. Results demonstrated that students in the direct instruction group scored higher on the assessment test and completed the transfer task at a faster pace; however, this was not statistically significant. Results also suggest that a mixture of instructional styles would serve to effectively disseminate information, as well as motivate students to learn.
Resumo:
Vascular endothelial growth factor (VEGF) is a hypoxia-inducible angiogenic peptide with recently identified neurotrophic effects. Because some neurotrophic factors can protect neurons from hypoxic or ischemic injury, we investigated the possibility that VEGF has similar neuroprotective properties. In HN33, an immortalized hippocampal neuronal cell line, VEGF reduced cell death associated with an in vitro model of cerebral ischemia: at a maximally effective concentration of 50 ng/ml, VEGF approximately doubled the number of cells surviving after 24 h of hypoxia and glucose deprivation. To investigate the mechanism of neuroprotection by VEGF, the expression of known target receptors for VEGF was measured by Western blotting, which showed that HN33 cells expressed VEGFR-2 receptors and neuropilin-1, but not VEGFR-1 receptors. The neuropilin-1 ligand placenta growth factor-2 failed to reproduce the protective effect of VEGF, pointing to VEGFR-2 as the site of VEGF's neuroprotective action. Two phosphatidylinositol 3′-kinase inhibitors, wortmannin and LY294002, reversed the neuroprotective effect of VEGF, implicating the phosphatidylinositol 3′-kinase/Akt signal transduction system in VEGF-mediated neuroprotection. VEGF also protected primary cultures of rat cerebral cortical neurons from hypoxia and glucose deprivation. We conclude that in addition to its known role as an angiogenic factor, VEGF may exert a direct neuroprotective effect in hypoxic-ischemic injury.
Resumo:
Cover title.
Resumo:
Two studies investigated the context deletion effect, the attenuation of priming in implicit memory tests of words when words have been studied in text rather than in isolation. In Experiment 1, stem completion for single words was primed to a greater extent by words studied alone than in sentence contexts, and a higher proportion of completions from studied words was produced under direct instructions (cued recall) than under indirect instructions (produce the first completion that comes to mind). The effect of a sentence context was eliminated when participants were instructed to attend to the target word during the imagery generation task used in the study phase. In Experiment 2, the effect of a sentence context at study was reduced when the target word was presented in distinctive format within the sentence, and the study task (grammatical judgment) was directed at a word other than the target. The results implicate conceptual and perceptual processes that distinguish a word from its context in priming in word stem completion.
Resumo:
C-reactive protein (CRP) is the prototypic acute phase serum protein in humans. The effects of CRP on primary human monocyte adhesion molecule expression and interaction with the endothelium have not been studied. Herein, we describe an investigation into the phenotypic and functional consequences of CRP binding to peripheral blood monocytes ex vivo. Peripheral whole blood was collected from healthy, non-smoking males. Mononuclear cells (MNC) and monocytes were isolated by differential centrifugation using lymphoprep and Dynal negative isolation kit, respectively. Cells were exposed to CRP from 0 to 250 μg/ml for 0-60 min at 37°C and analysed for (a) CD11b, PECAM-1 (CD31) and CD32 expression by flow cytometry and (b) adhesion to LPS (1 μg/ml; 0-24 h) treated human umbilical vein endothelial cells (HUVEC). CD14+ monocyte expression of CD11b increased significantly up to twofold when exposed to CRP, compared to controls. There was no significant difference in CD32 expression, whereas CD31 expression decreased after exposure to CRP. CRP treatment of monocytes inhibited their adhesion to early LPS-activated HUVEC (0-5 h). However, the adhesion of CRP-treated monocytes to HUVEC was significantly greater to late activation antigens on HUVEC (24 h, LPS) compared to controls. We have shown that CRP can affect monocyte activation ex vivo and induce phenotypic changes that result in an altered recruitment to endothelial cells. This study provides the first evidence for a further role for C-reactive protein in both monocyte activation and adhesion, which may be of importance during an inflammatory event.