962 resultados para Diffraction à balayage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endoglucanases are enzymes that hydrolyze cellulose and are important components of the cellulolytic complex. In contrast to other members of the complex, they cleave internal beta-1,4-glycosidic bonds in the cellulose polymer, allowing cellulose to be used as an energy source. Since biomass is an important renewable source of energy, the structural and functional characterization of these enzymes is of interest. In this study, endoglucanase III from Trichoderma harzianum was produced in Pichia pastoris and purified. Crystals belonging to the orthorhombic space group P212121, with unit-cell parameters a = 47.54, b = 55.57, c = 157.3 angstrom, were obtained by the sitting-drop vapour-diffusion method and an X-ray diffraction data set was collected to 2.07 angstrom resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the classification of 110 copper ore samples from Sossego Mine, based on X-ray diffraction and cluster analysis. The comparison based on the position and the intensity of the diffracted peaks allowed the distinction of seven ore types, whose differences refer to the proportion of major minerals: quartz, feldspar, actinolite, iron oxides, mica and chlorite. There was a strong correlation between the grouping and the location of the samples in Sequeirinho and Sossego orebodies. This relationship is due to different types and intensities of hydrothermal alteration prevailing in each body, which reflect the mineralogical composition and thus the X-ray diffractograms of samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basic physical-chemistry reactions of demineralization and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using Synchrotron X-ray diffraction. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the Brazilian Synchrotron Light Laboratory-LNLS, Campinas, Brazil. X-ray diffraction experiments were performed both in powder samples and polished surfaces. The powder samples were analyzed to obtain the characterization of a typical healthy enamel pattern. The polished surfaces were analyzed in specific areas that have been identified as fluorotic ones. X-ray diffraction data were obtained for all samples and these data were compared with the control samples and also with the literature data. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid lipid nanoparticles (SLN) without drug and SLN loaded with chloroaluminum phthalocyanine (AlClPc) were prepared by solvent diffusion method in aqueous system and characterized by thermal analyses and X-ray diffraction (XRD) in this study. Determination of particle size, zeta potential (ZP), and encapsulation efficiency were also evaluated. SLN containing AlClPc of nanometer size with high encapsulation efficiency and ZP were obtained. The results indicated that the size of SLN loaded with AlClPc is larger than that of the inert particle, but ZP is not changed significantly with incorporation of the drug. In differential scanning calorimetry (DSC) curves, it was observed that the melting point of stearic acid (SA) isolated and in SLN occurred at 55 and 64 degrees C, respectively, suggesting the presence of different polymorphs. DSC also shows that the crystallinity state of SLN was much less than that of SA isolated. The incorporation of drug in SLN may have been favored by this lower crystallinity degree of the samples. XRD techniques corroborated with the thermal analytic techniques, suggesting the polymorphic modifications of stearic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims. Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods. We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br gamma line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during similar to 5h/night, corresponding to similar to 60 degrees position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results. By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius R-eq = 11.6 +/- 0.3 R-circle dot, equatorial rotation velocity V-eq = 298 +/- 9 km s(-1), rotation axis inclination angle i = 101.5 +/- 5.2 degrees, and rotation axis position angle (from North to East) PA(rot) = 34.9 +/- 1.6 degrees. From these parameters and the stellar distance, the equatorial angular diameter circle divide(eq) of Achernar is found to be 2.45 +/- 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, circle divide(eq) and PA(rot) measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions. The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to similar to 4 times smaller than the diffraction-limited angular resolution of the interferometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solid solution based on Nb5Si3 (Cr5B3 structure type, D8(l), tl32, 14/mcm, No140, a=6.5767 angstrom, c=11.8967 angstrom) in the Nb-Si-B system was studied from the structural and thermodynamic point of view both experimentally and by ab initio calculations. Rietveld refinement of powder X-ray synchrotron data allowed to determine the boron to silicon substitution mechanism and the structural parameters. Ab initio calculations of different ordered compounds and selected disordered alloys allowed to obtain in addition to the enthalpy of formation of the solution, substitution mechanism and structural parameters which are in excellent agreement with the experimental data. The stability of the phase is discussed. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gedunin compound (C28H34O6) is a natural product extracted from Trichilia pallida that has shown a wide activity. The crystallographic structure shows two conformers in the asymmetric unit, which differ in a rotation of the furan group. To understand this molecular arrangement, the density functional calculations. Molecular Electrostatic Potential (MEP) and thermodynamic function calculation have been performed at the B3LYP/6-311++g(d,p) level. Both conformers were optimized and the agreement with the experimental structure was very good, making possible further theoretical analysis of the structure. The inter-conversion between two conformers depends on the energy barrier. This process is studied in the vacuum and shows two transition states with a low energetic barrier for a potential energy curve scanning rigid around furan group: 4.37 kcal/mol and 16.52 kcal/mol. As the first transition state has a notably lower energetic barrier, the preferred inter-conversion pathway between the conformers involves the first rather than the second transition state. Understanding this transition state in detail led us to perform its optimization, showing an energetic barrier around 3.66 kcal/mol. The negative free energy and low enthalpy confirm that the process is spontaneous and exothermic. The results show that this requirement makes the existence of the two conformers in the asymmetric unit possible. The structure of molecules in the asymmetric unit is better understood when the MEP is used on the interaction between molecules. For Gedunin, both molecules have shown MEP with well-defined regions, and this behavior contributes to the observed link between molecules and for the negative regions complementing positive regions of another molecule. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression, purification, crystallization and preliminary X-ray diffraction characterization of malate dehydrogenase (MDH) from the malarial parasite Plasmodium falciparum (PfMDH) are reported. In order to gain a deeper understanding of the function and role of PfMDH, the protein was purified to homogeneity. The purified protein crystallized in space group P1, with unit-cell parameters a = 72, b = 157, c = 159 angstrom, a = 105, beta = 101, ? = 95 degrees. The resulting crystals diffracted to a maximal resolution of 2.24 angstrom and the structure has been solved by molecular replacement, with 16 monomers in the asymmetric unit. The 16 monomers are arranged into four independent tetramers, in agreement with previous reports demonstrating the tetrameric solution state of PfMDH. The X-ray structure of PfMDH is expected to clarify the differences in catalysis by PfMDH compared with other MDH family members and to provide a basis for the structure-based design of specific PfMDH inhibitors as well as general MDH inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two myotoxic and noncatalytic Lys49-phospholipases A2 (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A2 (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.562.05 angstrom and belonged to space groups P3121 (braziliantoxin-II), P6522 (braziliantoxin-III) and P21 (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A2 (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A2 braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A2.