996 resultados para Differentiation In-vitro
Resumo:
RT-PCR followed by 5'- and 3'- rapid amplification of cDNA ends was used to clone and sequence ovine prolactin-releasing peptide (PrRP). The cDNA was characterised by short 5'- and 3'-untranslated regions and a GC-rich (71%) coding region. The nucleotide and deduced amino acid sequences for the coding region showed 95.6 and 94.9% identity with bovine PrRP but the amino acid sequence of PrRP31 was conserved between these species. Northern blot analysis and RT-PCR showed that, as in the rat, the peptide was more abundantly expressed in the brainstem than the hypothalamus. However, in the ovine hypothalamus, PrRP mRNA expression was more widespread than in the rat, with expression detected in both rostral and caudal parts of the mediobasal hypothalamus. The effects of synthetic ovine PrRP on prolactin secretion both in vitro and in vivo were also examined. In primary cultures of sheep pituitary cells, PrRP significantly (P
Resumo:
Random mutagenesis and genetic screens for impaired Raf function in Caenorhabditis elegans were used to identify six loss-of-function alleles of lin-45 raf that result in a substitution of a single amino acid. The mutations were classified as weak, intermediate, and strong based on phenotypic severity. We engineered these mutations into the homologous residues of vertebrate Raf-1 and analyzed the mutant proteins for their underlying biochemical defects. Surprisingly, phenotype strength did not correlate with the catalytic activity of the mutant proteins. Amino acid substitutions Val-589 and Ser-619 severely compromised Raf kinase activity, yet these mutants displayed weak phenotypes in the genetic screen. Interestingly, this is because these mutant Raf proteins efficiently activate the MAPK (mitogen-activated protein kinase) cascade in living cells, a result that may inform the analysis of knockout mice. Equally intriguing was the observation that mutant proteins with non-functional Ras-binding domains, and thereby deficient in Ras-mediated membrane recruitment, displayed only intermediate strength phenotypes. This confirms that secondary mechanisms exist to couple Ras to Raf in vivo. The strongest phenotype in the genetic screens was displayed by a S508N mutation that again did not correlate with a significant loss of kinase activity or membrane recruitment by oncogenic Ras in biochemical assays. Ser-508 lies within the Raf-1 activation loop, and mutation of this residue in Raf-1 and the equivalent Ser-615 in B-Raf revealed that this residue regulates Raf binding to MEK. Further characterization revealed that in response to activation by epidermal growth factor, the Raf-S508N mutant protein displayed both reduced catalytic activity and aberrant activation kinetics: characteristics that may explain the C. elegans phenotype.
Resumo:
Caveolae and their proteins, the caveolins, transport macromolecules; compartmentalize signalling molecules; and are involved in various repair processes. There is little information regarding their role in the pathogenesis of significant renal syndromes such as acute renal failure (ARF). In this study, an in vivo rat model of 30 min bilateral renal ischaemia followed by reperfusion times from 4 h to 1 week was used to map the temporal and spatial association between caveolin-1 and tubular epithelial damage (desquamation, apoptosis, necrosis). An in vitro model of ischaemic ARF was also studied, where cultured renal tubular epithelial cells or arterial endothelial cells were subjected to injury initiators modelled on ischaemia-reperfusion (hypoxia, serum deprivation, free radical damage or hypoxia-hyperoxia). Expression of caveolin proteins was investigated using immunohistochemistry, immunoelectron microscopy, and immunoblots of whole cell, membrane or cytosol protein extracts. In vivo, healthy kidney had abundant caveolin-1 in vascular endothelial cells and also some expression in membrane surfaces of distal tubular epithelium. In the kidneys of ARF animals, punctate cytoplasmic localization of caveolin-1 was identified, with high intensity expression in injured proximal tubules that were losing basement membrane adhesion or were apoptotic, 24 h to 4 days after ischaemia-reperfusion. Western immunoblots indicated a marked increase in caveolin-1 expression in the cortex where some proximal tubular injury was located. In vitro, the main treatment-induced change in both cell types was translocation of caveolin-1 from the original plasma membrane site into membrane-associated sites in the cytoplasm. Overall, expression levels did not alter for whole cell extracts and the protein remained membrane-bound, as indicated by cell fractionation analyses. Caveolin-1 was also found to localize intensely within apoptotic cells. The results are indicative of a role for caveolin-1 in ARF-induced renal injury. Whether it functions for cell repair or death remains to be elucidated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Undiluted culture filtrates of two commercial products of Trichoderma spp., Trichopel and Trichoflow, and two isolates of Penicillium citrinum completely inhibited the conidial germination of macroconidia of Claviceps africana , the cause of ergot or sugary disease of sorghum (Sorghum bicolor) in vitro . Similarly, Pseudomonas aeruginosa and Burkholderia cepacia completely inhibited macroconidial germination, with the former being more effective at high dilutions. In contrast, these bacterial isolates failed to inhibit infection in vivo in glasshouse tests with ergot-inoculated sorghum, but all fungal biocontrol agents (including an isolate of Epicoccum nigrum) reduced the severity of disease (percentage of infected spikelets per panicle), in some cases completely inhibiting the development of ergot. In a second glasshouse trial, optimum control was achieved when the biocontrol agents were applied 3-7 days before inoculation with conidia of C. africana .
Resumo:
OBJECTIVE - To assess the effect of age on glucose metabolism by examining 1) glucose metabolism in young and middle-aged subjects when total or regional adiposity is taken into account and 2) in vitro glucose transport in adipose tissue explants from young and middle-aged women paired for total and abdominal adiposity. RESEARCH DESIGN AND METHODS - Study 1: body composition, subcutaneous abdominal and visceral adipose tissue areas, and fasting and oral glucose-stimulated glucose and insulin were measured in 84 young and 81 middle-aged men and in 110 young and 91 middle-aged women. Study 2: glucose uptake in subcutaneous abdominal and visceral adipose tissue explants were measured in eight young and eight middle-aged women. RESULTS - Study 1: young and middle-aged men showed similar subcutaneous abdominal tissue area, whereas fat mass and visceral adipose tissue were greater in middle-aged than in young men (P < 0.01). Fat mass and subcutaneous and visceral adipose tissue areas were greater in middle-aged as compared with young women (P < 0.01). Fasting plasma glucose and the glucose response to an oral glucose tolerance test were significantly higher in middle-aged than in young men and women (P < 0.001). Statistical control for visceral adipose tissue area eliminated the difference seen in glucose response in men and women. Study 2: glucose transport in subcutaneous and omental adipose tissue did not differ between young and middle-aged women. CONCLUSIONS - 1) Visceral obesity, more than age per se, correlates with glucose intolerance in middle-aged subjects; 2) aging does not influence in vitro adipose tissue glucose uptake.
Resumo:
In order to establish the relationship between solute lipophilicity and skin penetration (including flux and concentration behavior), we examined the in vitro penetration and membrane concentration of a series of homologous alcohols (C2-C10) applied topically in aqueous solutions to human epidermal, full-thickness, and dermal membranes. The partitioning/distribution of each alcohol between the donor solution, stratum corneum, viable epidermis, dermis, and receptor phase compartments was determined during the penetration process and separately to isolated samples of each tissue type. Maximum flux and permeability coefficients are compared for each membrane and estimates of alcohol diffusivity are made based on flux/concentration data and also the related tissue resistance (the reciprocal of permeability coefficient) for each membrane type. The permeability coefficient increased with increasing lipophilicity to alcohol C8 (octanol) with no further increase for C10 (decanol). Log vehicle:stratum corneum partition coefficients were related to logP , and the concentration of alcohols in each of the tissue layers appeared to increase with lipophilicity. No difference was measured in the diffusivity of smaller more polar alcohols in the three membranes; however, the larger more lipophilic solutes showed slower diffusivity values. The study showed that the dermis may be a much more lipophilic environment than originally believed and that distribution of smaller nonionized solutes into local tissues below a site of topical application may be estimated based on knowledge of their lipophilicity alone.
Resumo:
Ataxia-telangiectasia Mutated (ATM), mutated in the human disorder ataxia-telangiectasia, is rapidly activated by DNA double strand breaks. The mechanism of activation remains unresolved, and it is uncertain whether autophosphorylation contributes to activation. We describe an in vitro immunoprecipitation system demonstrating activation of ATM kinase from unirradiated extracts by preincubation with ATP. Activation is both time- and ATP concentration-dependent, other nucleotides fail to activate ATM, and DNA is not required. ATP activation is specific for ATM since it is not observed with kinase-dead ATM, it requires Mn2+, and it is inhibited by wortmannin. Exposure of activated ATM to phosphatase abrogates activity, and repeat cycles of ATP and phosphatase treatment reveal a requirement for autophosphorylation in the activation process. Phosphopeptide mapping revealed similarities between the patterns of autophosphorylation for irradiated and ATP-treated ATM. Caffeine inhibited ATM kinase activity for substrates but did not interfere with ATM autophosphorylation. ATP failed to activate either A-T and rad3-related protein (ATR) or DNA-dependent protein kinase under these conditions, supporting the specificity for ATM. These data demonstrate that ATP can specifically induce activation of ATM by a mechanism involving autophosphorylation. The relationship of this activation to DNA damage activation remains unclear but represents a useful model for understanding in vivo activation.
Resumo:
Purpose. The flux of a topically applied drug depends on the activity in the skin and the interaction between the vehicle and skin. Permeation of vehicle into the skin can alter the activity of drug and the properties of the skin barrier. The aim of this in vitro study was to separate and quantify these effects. Methods. The flux of four radiolabeled permeants (water, phenol, diflunisal, and diazepam) with log K-oct/water values from 1.4 to 4.3 was measured over 4 h through heat-separated human epidermis pretreated for 30 min with vehicles having Hildebrand solubility parameters from 7.9 to 23.4 (cal/cm(3))(1/2). Results. Enhancement was greatest after pretreatment with the more lipophilic vehicles. A synergistic enhancement was observed using binary mixtures. The flux of diazepam was not enhanced to the same extent as the other permeants, possibly because its partitioning into the epidermis is close to optimal (log K-oct 2.96). Conclusion. An analysis of the permeant remaining in the epidermis revealed that the enhancement can be the result of either increased partitioning of permeant into the epidermis or an increasing diffusivity of permeants through the epidermis.
Resumo:
Background Peroxisome proliferator activated receptor gamma (PPARgamma) is a ligand-activated transcription factor known to be central to both adipose tissue development and insulin action. Growth of adipose tissue requires differentiation of preadipocytes with acquisition of specific cellular functions including insulin sensitivity, leptin secretion and the capacity to store triglyceride. Dietary fatty acids and members of the thiazolidinedione class of compounds have been reported to influence adipogenesis at the transcriptional level. Here, we compare the effects of a dietary fatty acid, linoleic acid, and a thiazolidinedione, rosiglitazone, on biochemical and functional aspects of human preadipocyte differentiation in vitro . Materials and methods Human omental and subcutaneous preadipocytes were subcultured 2-3 times and subsequently differentiated for 21 days in the presence of either linoleic acid or rosiglitazone. Differentiation was assessed using a number of biochemical and functional parameters. Results Omental and subcutaneous preadipocytes differentiated in the presence of linoleic acid showed marked cytoplasmic triacylglycerol accumulation however, no biochemical markers of differentiation (LPL expression, G3PDH gene expression and enzyme activity and leptin expression or secretion) were detected. In contrast, treatment of these cells with rosiglitazone induced full biochemical differentiation as judged by all markers assessed, despite comparatively little lipid accumulation. The rosiglitazone effects were subcutaneous depot-specific. Cells treated with linoleic acid showed decreased glucose uptake cf rosiglitazone-treated cells. A luciferase reporter assay demonstrated that rosiglitazone potently activates h-peroxisome proliferator activated receptor gamma while linoleic acid had no effect. Conclusions These studies demonstrate that (a) human preadipocytes have the potential to accumulate triacylglycerol irrespective of their stage of biochemical differentiation; (b) while omental preadipocytes are refractory to biochemical differentiation in vitro , they are able to accumulate triacylglycerol; and (c) rosiglitazone and linoleic acid may exert their effects via different biochemical pathways.
Unexpected clobetasol propionate profile in human stratum corneum after topical application in vitro
Resumo:
Purpose. The validity of using drug amount-depth profiles in stratum corneum to predict uptake of clobetasol propionate into stratum corneum and its transport into deeper skin layers was investigated. Methods. In vitro diffusion experiments through human epidermis were carried out using Franz-type glass diffusion cells. A saturated solution of clobetasol propionate in 20% (V/V) aqueous propylene glycol was topically applied for 48 h. Steady state flux was calculated from the cumulative amount of drug permeated vs. time profile. Epidermal partitioning was conducted by applying a saturated drug solution to both sides of the epidermis and allowing time to equilibrate. The tape stripping technique was used to define drug concentration-depth profiles in stratum corneum for both the diffusion and equilibrium experiments. Results. The concentration-depth profile of clobetasol propionate in stratum corneum for the diffusion experiment is biphasic. A logarithmic decline of the drug concentration over the first four to five tape strips flattens to a relatively constant low concentration level in deeper layers. The drug concentration-depth profile for the equilibrium studies displays a similar shape. Conclusions. The shape of the concentration-depth profile of clobetasol propionate is mainly because of the variable partitioning coefficient in different stratum corneum layers.
Resumo:
1. Tiger snake antivenom, raised against Notechis scutatus venom, is indicated not only for the treatment of envenomation by this snake, but also that of the copperhead (Austrelaps superbus ) and Stephen's banded snake (Hoplocephalus stephensi ). The present study compared the neuromuscular pharmacology of venom from these snakes and the in vitro efficacy of tiger snake antivenom. 2. In chick biventer cervicis muscle and mouse phrenic nerve diaphragm preparations, all venoms (3-10 mug/mL) produced inhibition of indirect twitches. In the biventer muscle, venoms (10 mug/mL) inhibited responses to acetylcholine (1 mmol/L) and carbachol (20 mumol/L), but not KCl (40 mmol/L). The prior (10 min) administration of 1 unit/mL antivenom markedly attenuated the neurotoxic effects of A. superbus and N. scutatus venoms (10 mug/mL), but was less effective against H. stephensi venom (10 mug/mL); 5 units/mL antivenom attenuated the neurotoxic activity of all venoms. 3. Administration of 5 units/mL antivenom at t(90) partially reversed, over a period of 3 h, the inhibition of twitches produced by N. scutatus (10 mug/mL; 41% recovery), A. superbus (10 mug/mL; 25% recovery) and H. stephensi (10 mug/mL; 50% recovery) venoms. All venoms (10-100 mug/mL) also displayed signs of in vitro myotoxicity. 4. The results of the present study indicate that all three venoms contain neurotoxic activity that is effectively attenuated by tiger snake antivenom.
Resumo:
Crambe (Crambe abyssinica) pertence à família Brassicaceae, originário da Etiópia e principalmente destinado à produção de forragem (30 a 32% de proteína bruta). Atualmente, tem sido bastante cultivado visando à extração de óleo vegetal. Com os atuais incentivos à busca de fontes de energias renováveis, o cultivo de crambe vem ganhando papel de destaque na produção de biodiesel por suas diversas vantagens, como: (a) rápido ciclo de vida (colhida em torno de 90 dias); (b) alta produção de biomassa; (c) alta produtividade de sementes (1000 e 1500 kg ha-1); (d) menor custo de produção em relação a outras fontes oleaginosas, como, canola, girassol e soja; (e) um percentual de óleo total na semente entre 32 e 38%, superando, por exemplo, a soja; (f) potencial de fitorremediação, eficiente na descontaminação de arsênio, cromo e outros metais pesados; e (g) elevado percentual de ácido erúcico (50 a 60%) sendo útil na indústria de plástico e lubrificante. Devido aos poucos trabalhos realizados com crambe, abre-se um vasto campo de investigações científicas que tenham como objetivo desenvolver as potencialidades dessa cultura e, consequentemente, melhorar os aspectos agronômicos e tecnológicos para seu emprego na indústria de biodiesel. Nesse contexto, as técnicas de cultivo in vitro foram importantes tanto para a propagação massal, quanto como ferramenta para uma possível aplicação de outras técnicas biotecnológicas, contribuindo para uma produção homogênea, fiel e em larga escala. Portanto, este trabalho teve como objetivo geral avaliar as condições mais favoráveis à germinação, estabelecimento in vitro e micropropagação de Crambe abyssinica Hochst., além de verificar possíveis alterações genéticas e anatômicas, possibilitando a regeneração e produção de plântulas viáveis. Para a germinação e estabecimento in vitro de crambe, as condições mais favoráveis foram em meio B5 ou WPM, na presença ou ausência de pericarpo e na presença de luz. Na micropropagação dessa espécie, uma frequência satisfatória de regeneração de brotos foi obtida a partir de segmentos apicais utilizados como explante em meio contendo 5 μM de BAP (6- benzilaminopurina), e o alongamento foi satisfatório com 1 μM de GA3 (ácido giberélico). Os marcadores moleculares ISSR (Inter-Simples Sequence Repeats) utilizados para a análise da estabilidade genética indicaram que o segmento apical de crambe é um explante confiável para a micropropagação de plantas geneticamente verdadeiras (true-to-tipe), ou seja, mantém a estabilidade genética. As diversas fontes de citocininas e concentrações utilizadas neste trabalho não promoveram mudanças, no sentido de alterar a organização e/ou a espessura em relação ao controle, e as alterações observadas na estrutura e espessura das folhas dos tratamentos de aclimatização prejudicaram o processo de estabelecimento da plântula ex vitro. Contudo, existe a necessidade de um enraizamento e aclimatização eficiente para completa propagação in vitro de crambe. Portanto, este protocolo de regeneração de plantas in vitro de crambe pode ser útil no processo de criação e desenvolvimento de novas cultivares em um tempo mais curto e no melhoramento genético usando explantes apicais.
Resumo:
A parede celular de Mycobacterium tuberculosis (Mtb) é constituída por 60% de lipídios, impedindo a passagem de uma grande quantidade de substâncias, além de desempenhar um importante papel na imunopatogênese. A apresentação desses antígenos aos linfócitos se dá por meio de moléculas do tipo CD1.Por sua vez a Apolipoproteína-E (ApoE), glicoproteína amplamente distribuída nos tecidos, pode facilitar a apresentação de lipídios pelo CD1. A ApoE possui três principais alelos ApoE- 2, 3 e 4, que codificam três isoformas de proteínas, tipos 2, 3 e 4, que possuem diferentes estruturas e funções. A presença de determinadas isoformas da ApoE está associada a doenças infecciosas, como herpes labial, dano hepático severo causado pelo vírus da hepatite C, diarréia infantil e tuberculose pulmonar. Neste contexto, avaliamos a participação da ApoE na atividade microbicida in vitro frente ao Mtb. Para tanto, foram arrolados 13 indivíduos PPD-, 17 indivíduos PPD+ e 4 indivíduos com tuberculose pulmonar ativa. O uso de plasma humano depletado de ApoE nos experimentos de atividade microbicida in vitro mostraram um aumento significante (p=0,02) no número de micobactérias (431.5 ± 81.92 UFC) quando comparado ao grupo controle (313.0 ± 74.61 UFC). Esses resultados foram confirmados por um modelo experimental utilizando esplenócitos de camundongos de camundongos C57BL/6 (815.9 ± 76.32 UFC) e animais APOE nocaute (1133 ± 86.85 UFC) (p = 0.021). Quanto à produção de IL-10, no grupo PPD+, observamos que o grupo com depleção de ApoE (866.7 ± 447.8) apresentou uma produção menor desta citocina com relação ao controle infectado (1089 ± 481.3) (p=0,023). Já em relação ao IFN-, em ambos os grupos observou-se, após 72 horas, uma tendência à diminuição da produção dessa citocina no grupo com depleção, com relação ao grupo controle. Esses dados sugerem que a ApoE tem papel distinto na ativação da resposta imune e sua ausência pode prejudicar a resposta imune frente à tuberculose