904 resultados para Detection and fault location
Resumo:
Failure to detect a species at sites where it is present (i.e. imperfect detection) is known to occur frequently, but this is often disregarded in monitoring programs and metapopulation studies. Here we modelled for the first time the probability of patch occupancy by a threatened small mammal, the southern water vole (Arvicola sapidus, while accounting for the probability of detection given occupancy. Based on replicated presence sign surveys conducted in autumn (November–December 2013) and winter (February–March 2014) in a farmland landscape, we used occupancy detection modelling to test the effects of vegetation, sampling effort, observer experience, and rainfall on detection probability. We then assessed whether occupancy was related to patch size, isolation, vegetation, or presence of water, after correcting for imperfect detection. The mean detection probabilities of water vole signs in autumn (0.71) and winter (0.81) indicated that false absences may be generated in about 20–30% of occupied patches surveyed by a single observer on a single occasion. There was no statistical support for the effects of covariates on detectability. After controlling for imperfect detection, the mean probabilities of occupancy in autumn (0.31) and winter (0.29) were positively related to patch size and presence of water, and negatively so, albeit weakly, to patch isolation. Overall, our study underlined the importance of accounting for imperfect detection in sign surveys of small mammals such as water voles, pointing out the need to use occupancy detection modelling together with replicate surveys for accurately estimating occupancy and the factors affecting it.
Resumo:
Abstract Presently, Hop stunt viroid(HSVd) and Citrus exocortis viroid (CEVd) are the only viroids reported to infect grapevines (Vitis spp.) in Brazil, among the seven viroid species already reported infecting this host in other countries. All grapevine viroid diseases are graft-transmissible and can induce losses especiallywhenassociatedwithviruses.Theaimofthisworkwas to confirm infection by Grapevine yellow speckle viroid 1(GYSVd-1) in grapevine samples exhibiting yellow speckle symptoms in the leaves and in asymptomatic samples sequenced by next generation sequencing (NGS). The occurrence of this viroid in Brazil was further investigated in a second study. Total RNAs and dsRNAs were extracted from five symptomatic plants and 16 asymptomatic samples, respectively. Specific primers were used for RT-PCR and amplified DNA fragments were cloned and sequenced by the Sanger method. Eleven complete nucleotide sequences of GYSVd-1 isolates (366 ?367 nt) were obtained from NGS and from RT-PCR amplicons. Comparisons showed high identities (95.9 ?100 %) among ten isolates and an identity of 87.2 ?90.4 % with a divergent isolate (RM-BR). Phylogenetic analyses placed GYSVd-1 isolates in four clusters (types 1, 2, 3 and 4). All GYSVd-1 infections were confirmed by conventional RT-PCR and RT-qPCR using specific oligonucleo-tides and a labeled probe. This is the first report and molecular characterization of GYSVd-1 infecting grapevines in Brazil, and our survey indicates that this viroid could be widespread in the major grape producing regions of Brazil. Keywords GYSVd-1 . Incidence . Next generation sequencing. Secondary structure. Vine.
Resumo:
In medicine, innovation depends on a better knowledge of the human body mechanism, which represents a complex system of multi-scale constituents. Unraveling the complexity underneath diseases proves to be challenging. A deep understanding of the inner workings comes with dealing with many heterogeneous information. Exploring the molecular status and the organization of genes, proteins, metabolites provides insights on what is driving a disease, from aggressiveness to curability. Molecular constituents, however, are only the building blocks of the human body and cannot currently tell the whole story of diseases. This is why nowadays attention is growing towards the contemporary exploitation of multi-scale information. Holistic methods are then drawing interest to address the problem of integrating heterogeneous data. The heterogeneity may derive from the diversity across data types and from the diversity within diseases. Here, four studies conducted data integration using customly designed workflows that implement novel methods and views to tackle the heterogeneous characterization of diseases. The first study devoted to determine shared gene regulatory signatures for onco-hematology and it showed partial co-regulation across blood-related diseases. The second study focused on Acute Myeloid Leukemia and refined the unsupervised integration of genomic alterations, which turned out to better resemble clinical practice. In the third study, network integration for artherosclerosis demonstrated, as a proof of concept, the impact of network intelligibility when it comes to model heterogeneous data, which showed to accelerate the identification of new potential pharmaceutical targets. Lastly, the fourth study introduced a new method to integrate multiple data types in a unique latent heterogeneous-representation that facilitated the selection of important data types to predict the tumour stage of invasive ductal carcinoma. The results of these four studies laid the groundwork to ease the detection of new biomarkers ultimately beneficial to medical practice and to the ever-growing field of Personalized Medicine.
Resumo:
This thesis project aims to the development of an algorithm for the obstacle detection and the interaction between the safety areas of an Automated Guided Vehicles (AGV) and a Point Cloud derived map inside the context of a CAD software. The first part of the project focuses on the implementation of an algorithm for the clipping of general polygons, with which has been possible to: construct the safety areas polygon, derive the sweep of this areas along the navigation path performing a union and detect the intersections with line or polygon representing the obstacles. The second part is about the construction of a map in terms of geometric entities (lines and polygons) starting from a point cloud given by the 3D scan of the environment. The point cloud is processed using: filters, clustering algorithms and concave/convex hull derived algorithms in order to extract line and polygon entities representing obstacles. Finally, the last part aims to use the a priori knowledge of possible obstacle detections on a given segment, to predict the behavior of the AGV and use this prediction to optimize the choice of the vehicle's assigned velocity in that segment, minimizing the travel time.
Resumo:
Nous proposons une approche qui génère des scénarios de visualisation à partir des descriptions de tâches d'analyse de code. La dérivation de scénario est considérée comme un processus d'optimisation. Dans ce contexte, nous évaluons différentes possibilités d'utilisation d'un outil de visualisation donnée pour effectuer la tâche d'analyse, et sélectionnons le scénario qui nécessite le moins d'effort d'analyste. Notre approche a été appliquée avec succès à diverses tâches d'analyse telles que la détection des défauts de conception.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The main purpose of this paper is to present architecture of automated system that allows monitoring and tracking in real time (online) the possible occurrence of faults and electromagnetic transients observed in primary power distribution networks. Through the interconnection of this automated system to the utility operation center, it will be possible to provide an efficient tool that will assist in decisionmaking by the Operation Center. In short, the desired purpose aims to have all tools necessary to identify, almost instantaneously, the occurrence of faults and transient disturbances in the primary power distribution system, as well as to determine its respective origin and probable location. The compilations of results from the application of this automated system show that the developed techniques provide accurate results, identifying and locating several occurrences of faults observed in the distribution system.
Resumo:
Nowadays, one of the most important concerns for many companies is to maintain the operation of their systems without sudden equipment break down. Because of this, new techniques for fault detection and location in mechanical systems subject to dynamic loads have been developed. This paper studies of the influence of the decay rate in the design of state observers using LMI for fault detection in mechanical systems. This influence is analyzed by the performance index proposed by Huh and Stein for the condition of a state observer. An example is presented to illustrate the methodology discussed.
Fault detection, diagnosis and active fault tolerant control for a satellite attitude control system
Resumo:
Modern control systems are becoming more and more complex and control algorithms more and more sophisticated. Consequently, Fault Detection and Diagnosis (FDD) and Fault Tolerant Control (FTC) have gained central importance over the past decades, due to the increasing requirements of availability, cost efficiency, reliability and operating safety. This thesis deals with the FDD and FTC problems in a spacecraft Attitude Determination and Control System (ADCS). Firstly, the detailed nonlinear models of the spacecraft attitude dynamics and kinematics are described, along with the dynamic models of the actuators and main external disturbance sources. The considered ADCS is composed of an array of four redundant reaction wheels. A set of sensors provides satellite angular velocity, attitude and flywheel spin rate information. Then, general overviews of the Fault Detection and Isolation (FDI), Fault Estimation (FE) and Fault Tolerant Control (FTC) problems are presented, and the design and implementation of a novel diagnosis system is described. The system consists of a FDI module composed of properly organized model-based residual filters, exploiting the available input and output information for the detection and localization of an occurred fault. A proper fault mapping procedure and the nonlinear geometric approach are exploited to design residual filters explicitly decoupled from the external aerodynamic disturbance and sensitive to specific sets of faults. The subsequent use of suitable adaptive FE algorithms, based on the exploitation of radial basis function neural networks, allows to obtain accurate fault estimations. Finally, this estimation is actively exploited in a FTC scheme to achieve a suitable fault accommodation and guarantee the desired control performances. A standard sliding mode controller is implemented for attitude stabilization and control. Several simulation results are given to highlight the performances of the overall designed system in case of different types of faults affecting the ADCS actuators and sensors.
Resumo:
The application of high-power voltage-source converters (VSCs) to multiterminal dc networks is attracting research interest. The development of VSC-based dc networks is constrained by the lack of operational experience, the immaturity of appropriate protective devices, and the lack of appropriate fault analysis techniques. VSCs are vulnerable to dc-cable short-circuit and ground faults due to the high discharge current from the dc-link capacitance. However, faults occurring along the interconnecting dc cables are most likely to threaten system operation. In this paper, cable faults in VSC-based dc networks are analyzed in detail with the identification and definition of the most serious stages of the fault that need to be avoided. A fault location method is proposed because this is a prerequisite for an effective design of a fault protection scheme. It is demonstrated that it is relatively easy to evaluate the distance to a short-circuit fault using voltage reference comparison. For the more difficult challenge of locating ground faults, a method of estimating both the ground resistance and the distance to the fault is proposed by analyzing the initial stage of the fault transient. Analysis of the proposed method is provided and is based on simulation results, with a range of fault resistances, distances, and operational conditions considered.
Resumo:
Power distribution automation and control are import-ant tools in the current restructured electricity markets. Unfortunately, due to its stochastic nature, distribution systems faults are hardly avoidable. This paper proposes a novel fault diagnosis scheme for power distribution systems, composed by three different processes: fault detection and classification, fault location, and fault section determination. The fault detection and classification technique is wavelet based. The fault-location technique is impedance based and uses local voltage and current fundamental phasors. The fault section determination method is artificial neural network based and uses the local current and voltage signals to estimate the faulted section. The proposed hybrid scheme was validated through Alternate Transient Program/Electromagentic Transients Program simulations and was implemented as embedded software. It is currently used as a fault diagnosis tool in a Southern Brazilian power distribution company.
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system