964 resultados para Degeneration.
Resumo:
Heterotranplantability of myxoma of rabbits was formely demonstrated when grafts from subcutaneous tissue in skin were used (MARGARINOS TÔRRES & RITA CARDOSOS, 1949). Better results are reported in this paper when grafts from the spleen of infected rabbits were employed. While grafts from normal spleen are almost completely absorbed in sixteen days, those from infected rabbits give origin to full-grown and vascularised tissue in which typical myxoma cells are predominant elements. Progressive growth of heterotransplantated myxoma cells is another similarity between infectious myxoma and malignant tumors. Formation of clear areas of circular contour (interference of a diffusible substance?) associated to myxomatous degeneration is very conspicuous. Peculiar changes of the ground substance, reticular and collagenous fibers (globular swelling, rosary and bulb formation) apparently related to myxomatous degeneration are described. An unexpected finding was the presence of typical intranuclear inclusion bodies in five among forty-eight grafts examined in the sixth day.
Resumo:
We had the opportunity to study 6 cases of the congenital form of toxoplasmosis, found in a series of 1200 necropsies of fetuses and newborn babies, realized at 3 different hospitals in Rio de Janeiro, Brazil. Among the 6 cases, 4 were premature babies liveborn at the 6th-8th gestational month and 2 were stillborn (1 premature and 1 at term). In all those cases, the diagnosis was based in the detection of the parasite in tissues and in one case it was even isolated the Toxoplasma from the necrotic material found in the cranial cavity. This strain of Toxoplasma, pathogenic to pigeons, to guinea pigs and to mice, is preserved by successive transfers in mice. Some facts observed in those cases present an interest not only strictly anatomic but also have certain value for the better acknowlegment of the disease. First, we want to call the attention to the presence of a sudden high fever, during or just before pregnancy in the 4 cases in which the maternal anamnesis was perfectly studied; this fever that was preceded by a normal beginning of pregnancy, had relatively rapid remission, but in 2 cases was immediately followed by uterine bleeding and premature delivery, although the puerperium had been apparently normal. It is known that are normal the subsequent children of the mothers that delivered a baby with toxoplasmosis and that several women have normal babies before the toxoplasmotic one. We believe that the fever observed in our cases could be indicative of the beginning of maternal infection and those are the reasons why we emphasize the need of careful anamnesis, specially in the cases actually diagnosed as inapparent infection. Another fact to notice is that in 5 of our cases the event premature delivery happened always between the 6th and the 8th months of pregnancy, and the only term fetus was delivered in advanced stage of maceration. The above mentioned facts could agree with the opinion of FRENKEL (1949), when he declared that "primary infection of the pregnant mother appears more likely to be the commoner mode of fetal toxoplasmic infection", but they would disagree with WEINMAN (1952) who believes that the transmission of Toxoplasma to the fetus is more frequent through a pregnant woman with chronic disease and who says "that infection contracted during pregnancy may and probably does happen from time to time"...Still in connection with the transmission of toxoplasmosis, we want to note the verification of inflammatory lesions in the placental villi and in the umbilical cord in 3 of the 4 cases in which such organs were examined at the microscope. In the case n. 1, we found several pseudocysts of Toxoplasma in the placenta, and the fibroblasts of Wharton's jelly were particularly rich in isolated forms and in colonies of Toxoplasma; the easy multiplication of the parasite in that tissue calls the attention and even suggests its utilisation for Toxoplasma's cultivation. The confirmation of Toxoplasma in human placenta was made only recently by CRISTEN et al. (1951) and by NEGHME et al. (1952), in Chile; it is not frequent in the literature, what gives some value to our present verification. Another observation was that provided by the case n. 6. This baby, a premature one of the 6th month, was 14 days old and-died with signs of respiratory disease, the causa mortis have been pneumonia. At the necropsy, we found no gross change that suggested toxoplasmosis, except the presence of some small necrotic focuses in the cerebral nervous substance around the ventricles. As a matter of fact, there was no enlargement of spleen or liver and neither leptomeningitis nor hydrocephalus. Such focuses were attributed to possible anoxia and in fact they are extremely similar to anoxial softenings, even when they are examined at the microscope; its structure composed of a central necrotic zone, surrounded by proliferated neuroglia and by a variable deposit of calcium salts, closely simulated the anoxial softenings, when the microscopical examination is based in the common histological preparations (hematoxilin-eosin, etc.). But when we examine preparations by the Giemsa or by the periodic acid-Schiff methods, we will note the presence of Toxoplasma, with its typical aspect or a little changed by degeneration. When we describe this observation, we wish to evidence the need of the search of Toxoplasma and closed parasites, in the cases of supposed pure anoxial softenings of nervous substance, in children. The frequency with which the congenital toxoplasmosis was anatomically verified should be emphasized, although the disease had not been clinically suspected, and it should be borne in mind that the second case of toxoplasmosis reported in the world was observed in Brazil by MAGARINOS TORRES; this case was the first to be described of the generalized congenital form of the infection, i. e. with myocardial lesions and parasites in skeletal muscles and skin.
Resumo:
Within the last few years, several reports have revealed that cell transplantation can be an effective way to replace lost neurons in the central nervous system (CNS) of patients affected with neurodegenerative diseases. Concerning the retina, the concept that newborn photoreceptors can integrate the retina and restore some visual functions was univocally demonstrated recently in the mouse eye (MacLaren et al. 2006) and remains to be achieved in human. These results pave the way to a standard approach in regenerative medicine aiming to replace lost photoreceptors. With the discovery of stem cells a great hope has appeared towards elaborating protocols to generate adequate cells to restore visual function in different retinal degeneration processes. Retinal stem cells (RSCs) are good candidates to repair the retina and are present throughout the retina development, including adulthood. However, neonatal mouse RSCs derived from the radial glia population have a different potential to proliferate and differentiate in comparison to adult RSCs. Moreover, we observed that adult mouse RSCs, depending on the culture conditions, have a marked tendency to transform, whereas neonatal RSCs show subtle chromosome abnormalities only after extensive expansion. These characteristics should help to identify the optimal cell source and culture conditions for cell transplantation studies. These results will be discussed in light of other studies using RSCs as well as embryonic stem cells. Another important factor to consider is the host environment, which plays a crucial role for cell integration and which was poorly studied in the normal and the diseased retina. Nonetheless, important results were recently generated to reconsider cell transplantation strategy. Perspectives to enhance cell integration by manipulating the environment will also be presented.
Resumo:
Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.
Resumo:
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder-the cerebellum-and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame-6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.
Resumo:
BACKGROUND: In patients with outer retinal degeneration, a differential pupil response to long wavelength (red) versus short wavelength (blue) light stimulation has been previously observed. The goal of this study was to quantify differences in the pupillary re-dilation following exposure to red versus blue light in patients with outer retinal disease and compare them with patients with optic neuropathy and with healthy subjects. DESIGN: Prospective comparative cohort study. PARTICIPANTS: Twenty-three patients with outer retinal disease, 13 patients with optic neuropathy and 14 normal subjects. METHODS: Subjects were tested using continuous red and blue light stimulation at three intensities (1, 10 and 100 cd/m2) for 13 s per intensity. Pupillary re-dilation dynamics following the brightest intensity was analysed and compared between the three groups. MAIN OUTCOME MEASURES: The parameters of pupil re-dilation used in this study were: time to recover 90% of baseline size; mean pupil size at early and late phases of re-dilation; and differential re-dilation time for blue versus red light. RESULTS: Patients with outer retinal disease showed a pupil that tended to stay smaller after light termination and thus had a longer time to recovery. The differential re-dilation time was significantly greater in patients with outer retinal disease (median = 28.0 s, P < 0.0001) compared with controls and patients with optic neuropathy. CONCLUSIONS: A differential response of pupil re-dilation following red versus blue light stimulation is present in patients with outer retinal disease but is not found in normal eyes or among patients with visual loss from optic neuropathy.
Resumo:
NR2E3, a photoreceptor-specific nuclear receptor (PNR), represses cone-specific genes and activates several rod-specific genes. In humans, mutations in NR2E3 have been associated with the recessively-inherited enhanced short-wavelength sensitive S-cone syndrome (ESCS) and, recently, with autosomal dominant (ad) retinitis pigmentosa (RP) (adRP). In the present work, we describe two additional families affected by adRP that carry a heterozygous c.166G>A (p.G56R) mutation in the NR2E3 gene. Functional analysis determined the dominant negative activity of the p.G56R mutant protein as the molecular mechanism of adRP. Interestingly, in one pedigree, the most common causal variant for ESCS (p.R311Q) cosegregated with the adRP-linked p.G56R mutation, and the compound heterozygotes exhibited an ESCS-like phenotype, which in 1 of the 2 cases was strikingly "milder" than the patients carrying the p.G56R mutation alone. Impaired repression of cone-specific genes by the corepressors atrophin-1 (dentatorubral-pallidoluysian atrophy [DRPLA] gene product) and atrophin-2 (arginine-glutamic acid dipeptide repeat [RERE] protein) appeared to be a molecular mechanism mediating the beneficial effect of the p.R311Q mutation. Finally, the functional dominance of the p.R311Q variant to the p.G56R mutation is discussed.
Resumo:
PURPOSE: Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or "wet" Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. METHODS: The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with "wet" AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8(+/-) mice expressing ß-galactosidase. Aged Mfge8(+/-) and Mfge8(-/-) mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV. RESULTS: rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8(-/-) mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch's membrane (BM) was slightly but significantly thicker in Mfge8(-/-) mice as compared to controls. CONCLUSIONS: Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8(-/-) mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD.
Resumo:
A panel of novel monoclonal antibodies was tested on the human entorhinal cortex for the recognition of age- and disease-related changes of neurofilament proteins (NF). Several antibodies identified phosphorylated NF-H subunit, which occurred preferentially in those aged between 60 and 80 years and were localized in degenerating neurons. Such neurons also contained neurofibrillary tangles, but neurofilament aggregates did not co-localize with tangles, nor did the quantity nor the number of NF-positive neurons correlate with the severity of Alzheimer's disease. This points to a susceptibility of NF in a subset of neurons for phosphorylation- and metabolically related morphological changes during neurodegeneration.
Resumo:
PURPOSE: To present the light and electron microscopic findings of a unique corneal dystrophy never before described in a German family carrying the Gly623Asp Mutation of the TGFBI gene with late clinical onset. DESIGN: Experimental study. PARTICIPANTS: Four affected and 6 nonaffected family members. METHODS: Slit-lamp examination, photographic documentation, and isolation of genomic DNA from peripheral blood leucocytes obtained from each family member examined. Exons 3, 4, 5, and 11 to 14 of the TGFBI gene were amplified and sequenced in these family members. Five corneal buttons of 3 affected siblings were excised at the time of penetrating keratoplasty. Light and electron microscopic examination were performed including immunohistochemistry with antibodies against keratoepithelin (KE) 2 and 15. MAIN OUTCOME MEASURES: Clinical and histologic characteristics of corneal opacification in affected patients and presence of coding region changes in the TGFBI gene. RESULTS: The specimens showed destructive changes in Bowman's layer and the adjacent stroma. Patchy Congo red-positive amyloid deposits were found within the epithelium in 1 cornea, in Bowman's layer and in the anterior stroma of all specimens also showing KE2, but not KE15, immunostaining. Electron microscopy revealed deposits mainly located in the anterior stroma and Bowman's layer and in small amounts in the basal area of some epithelial cells. The destroyed areas were strongly Alcian blue-positive, the Masson Trichrome stain proved mainly negative for the deposits. All affected but none of the unaffected family members had a heterozygous missense mutation in exon 14 of the TGFBI gene (G-->A transition at nucleotide 1915) replacing glycin by aspartic acid amino acid (Gly623Asp) at position 623 of the KE protein. CONCLUSIONS: In contrast with the patient carrying the Gly623Asp mutation of the TGFBI gene described by Afshari et al, our cases presented with Salzmann's nodular degeneration-like clinical features and their specimens contained KE2-positive amyloid. The reason for this now "meeting the expectation histologic phenotype" is unclear. The histologic findings emphasize that this is a unique corneal dystrophy, which shares no clinical characteristics with Reis-Bücklers' dystrophy and should be treated as a distinct entity. FINANCIAL DISCLOSURE(S): The authors have no proprietary or commercial interest in any materials discussed in this article.
Resumo:
Altered synaptic function is considered one of the first features of Alzheimer disease (AD). Currently, no treatment is available to prevent the dysfunction of excitatory synapses in AD. Identification of the key modulators of synaptopathy is of particular significance in the treatment of AD. We here characterized the pathways leading to synaptopathy in TgCRND8 mice and showed that c-Jun N-terminal kinase (JNK) is activated at the spine prior to the onset of cognitive impairment. The specific inhibition of JNK, with its specific inhibiting peptide D-JNKI1, prevented synaptic dysfunction in TgCRND8 mice. D-JNKI1 avoided both the loss of postsynaptic proteins and glutamate receptors from the postsynaptic density and the reduction in size of excitatory synapses, reverting their dysfunction. This set of data reveals that JNK is a key signaling pathway in AD synaptic injury and that its specific inhibition offers an innovative therapeutic strategy to prevent spine degeneration in AD.
Resumo:
Type 1 diabetes can affect hippocampal function triggering cognitive impairment through unknown mechanisms. Caffeine consumption prevents hippocampal degeneration and memory dysfunction upon different insults and is also known to affect peripheral glucose metabolism. Thus we now characterized glucose transport and the neurochemical profile in the hippocampus of streptozotocin-induced diabetic rats using in vivo(1)H NMR spectroscopy and tested the effect of caffeine consumption thereupon. We found that hippocampal glucose content and transport were unaltered in diabetic rats, irrespective of caffeine consumption. However diabetic rats displayed alterations in their hippocampal neurochemical profile, which were normalized upon restoration of normoglycaemia, with the exception of myo-inositol that remained increased (36 +/- 5%, p < 0.01 compared to controls) likely reflecting osmolarity deregulation. Compared to controls, caffeine-consuming diabetic rats displayed increased hippocampal levels of myo-inositol (15 +/- 5%, p < 0.05) and taurine (23 +/- 4%, p < 0.01), supporting the ability of caffeine to control osmoregulation. Compared to controls, the hippocampus of diabetic rats displayed a reduced density of synaptic proteins syntaxin, synaptophysin and synaptosome-associated protein of 25 kDa (in average 18 +/- 1%, p < 0.05) as well increased glial fibrillary acidic protein (20 +/- 5%, p < 0.05), suggesting synaptic degeneration and astrogliosis, which were prevented by caffeine consumption. In conclusion, neurochemical alterations in the hippocampus of diabetic rats are not related to defects of glucose transport but likely reflect osmoregulatory adaptations caused by hyperglycemia. Furthermore, caffeine consumption affected this neurochemical adaptation to high glucose levels, which may contribute to its potential neuroprotective effects, namely preventing synaptic degeneration and astrogliosis.