989 resultados para Decreased survival
Resumo:
Autophagy is an essential recycling pathway implicated in neurodegeneration either as a pro-survival or a pro-death mechanism. Its role after axonal injury is still uncertain. Axotomy of the optic nerve is a classical model of neurodegeneration. It induces retinal ganglion cell death, a process also occurring in glaucoma and other optic neuropathies. We analyzed autophagy induction and cell survival following optic nerve transection (ONT) in mice. Our results demonstrate activation of autophagy shortly after axotomy with autophagosome formation, upregulation of the autophagy regulator Atg5 and apoptotic death of 50% of the retinal ganglion cells (RGCs) after 5 days. Genetic downregulation of autophagy using knockout mice for Atg4B (another regulator of autophagy) or with specific deletion of Atg5 in retinal ganglion cells, using the Atg5(flox/flox) mice reduces cell survival after ONT, whereas pharmacological induction of autophagy in vivo increases the number of surviving cells. In conclusion, our data support that autophagy has a cytoprotective role in RGCs after traumatic injury and may provide a new therapeutic strategy to ameliorate retinal diseases.
Resumo:
This report reviews various measures of deprivation in order to be able to monitor socio-economic inequalities in cancer incidence, survival and service provision in the future.
Resumo:
PURPOSE Desmoid tumors are mesenchymal fibroblastic/myofibroblastic proliferations with locoregional aggressiveness and high ability to recur after initial treatment. We present the results of the largest series of sporadic desmoid tumors ever published to determine the prognostic factors of these rare tumors. PATIENTS AND METHODS Four hundred twenty-six patients with a desmoid tumor at diagnosis were included, and the following parameters were studied: age, sex, delay between first symptoms and diagnosis, tumor size, tumor site, previous history of surgery or trauma in the area of the primary tumor, surgical margins, and context of abdominal wall desmoids in women of child-bearing age during or shortly after pregnancy. We performed univariate and multivariate analysis for progression-free survival (PFS). Results In univariate analysis, age, tumor size, tumor site, and surgical margins (R2 v R0/R1) had a significant impact on PFS. PFS curves were not significantly different for microscopic assessment of surgical resection quality (R0 v R1). In multivariate analysis, age, tumor size, and tumor site had independent values. Three prognostic groups for PFS were defined on the basis of the number of independent unfavorable prognostic factors (0 or 1, 2, and 3). CONCLUSION This study clearly demonstrates that there are different prognostic subgroups of desmoid tumors that could benefit from different therapeutic strategies, including a wait-and-see policy.
Resumo:
We conducted a whole year research on the ecology of Mansonia indubitans and Ma. titillans in Macáes Pond, Costanera Sur Reserve, Buenos Aires, Argentina. The usage of different floating plants by immature instars and their overwintering was analized. The percentage of usage of the available floating macrophytes (Pistia, Limnobium, and Salvinia) by the larvae and pupae was studied. Also, we defined positivity (P+) as the percentage of plants with immature instars for each plant genus on a monthly basis. Ma. immature instars were captured throughout the year and Pistia was the resource most commonly exploited by the mosquitoes. The percentage of fourth-instar larvae and pupae on Pistia roots with respect to total immature instars captured was assessed on a monthly and seasonal basis. The proportion of fourth-instar larvae and pupae from both species of Mansonia on water lettuce roots, showed significant differences between months and seasons. Our results suggest that the populations of Ma. indubitans and Ma. titillans in Macáes Pond, survive during winter mainly as fourth-instar larvae.
Resumo:
AbstractPPARP is a nuclear receptor responding in vivo to several free fatty acids, and implicated in cell metabolism, differentiation and survival. PPARp is ubiquitously expressed but shows high expression in the developing and adult brain. PPARp is expressed in different cell types such as neurons and astrocytes, where it might play a role in metabolism. To study this nuclear receptor the laboratory engineered a PPARP -/- mouse model. The aim of my PhD was to dissect the role of PPARP in astrocytes.Experiments in primary culture revealed that cortical astrocytes from PPARP -/- mouse have an impaired energetic metabolism. Unstimulated PPARP -/- astrocytes exhibit a 30% diminution in glucose uptake, correlating to a 30% decrease in lactate release and intracellular glucose. After acute stimulation by D- aspartate mimicking glutamate exposure, both WT and -/- astrocytes up-regulate their metabolism to respond to the increasing energy needed (ATP) for glutamate uptake. According to the Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), the ratio between glucose uptake/ lactate release is 1. However, stimulated PPARp -/- astrocytes display a higher increase in lactate release than glucose uptake which remains lower than in WT. The extra glucose equivalents could come from the degradation of intra cellular glycogen stores, which indeed decrease in PPARP -/- cells upon stimulation. Lower glucose metabolism correlates with a decreased acute glutamate uptake in PPARP -/- astrocytes. Reciprocally, we also observed an increase of glutamate uptake and ATP production after treatment of WT astrocytes with a PPARp agonist. Glutamate transporter protein expression is not affected. However, their trafficking and localization might be altered as PPARp -/- astrocytes have higher cholesterol levels, which may also affect proper transporter structure in the membrane.Metabolism, transporter localization and cholesterol levels are respectively linked to cell mobility, cell cytoskeleton and cellular membrane composition. All three functions are important in astrocytes to in vivo acquire star shaped morphology, in a process known as stellation. PPARP -/- astrocytes showed an impaired acquired stellation in presence of neurons or chemical stimuli, as well as more actin stress fibers and cell adhesion structures. While non stellation of astrocytes is mainly an in vitro phenomenon, it reveals PPARp -/- primary astrocytes inability to respond to different exterior stimuli. These morphological phenotypes correlate with a slower migration in cell culture wound healing assays.This thesis work demonstrates that PPARp is implicated in cortical astrocyte glucose metabolism. PPARp absence leads to an unusual intracellular glycogen use. Added to the effect on acute glutamate uptake and astrocyte migration, PPARp could be an interesting target for neuroprotection therapies.RésuméPPARP est un récepteur nucléaire qui a pour ligands naturels certains acides gras libres. Il est impliqué dans le métabolisme, la différentiation et la survie des cellules. PPARP est ubiquitaire, et a une expression élevée dans le cerveau en développement ainsi qu'adulte. PPARp est exprimé dans différents types cellulaires tels que les neurones et les astrocytes, où il régule potentiellement leurs métabolismes. Pour étudier ce récepteur nucléaire, le laboratoire a créé un modèle de souris PPARp -/-. L'objectif de ma thèse est de comprendre le rôle de PPARp dans les astrocytes.Les expériences montrent un défaut du métabolisme énergétique dans les astrocytes corticaux primaires tirés de souris PPARp -/-. Sans stimulation, l'entrée du glucose dans les astrocytes PPARP -/- est diminuée de 30% ce qui correspond à une diminution de 30% du relargage du lactate. Après stimulation par du D-Aspartate qui mime une exposition au glutamate, les astrocytes WT et -/- augmentent leur métabolisme en réponse à la demande accrue en énergie (ATP) due à l'entrée du glutamate. D'après l'Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), le ratio entre le glucose entrant et le lactate sortant est de 1. Cependant le relargage du lactate dans les astrocytes PPARP-/- est plus élevé que l'entrée du glucose. L'apport supplémentaire de glucose transformé en lactate pourrait provenir de la dégradation des stocks de glycogène intracellulaire, qui sont partiellement diminués après stimulation dans les cellules PPARP -/-. Un métabolisme plus faible du glucose corrèle avec une réduction de l'import du glutamate dans les astrocytes PPARp -/-. Réciproquement, nous observons une augmentation de l'import du glutamate et de la production d'ATP après traitement avec l'agoniste pour PPARp. Bien que l'expression des transporteurs de glutamate ne soit pas affectée, nous ne pouvons pas exclure que leur localisation et leur structure soient altérées du fait du niveau élevé de cholestérol dans les astrocytes PPARp -/-.Le métabolisme, la localisation des transporteurs et le niveau de cholestérol sont tous liés au cytosquelette, à la mobilité, et à la composition des membranes cellulaires. Toutes ces fonctions sont importantes pour les astrocytes pour acquérir leur morphologie in vivo. Les astrocytes PPARP -/- présentent un défaut de stellation, aussi bien en présence de neurones que de stimuli chimiques, ainsi qu'un plus grand nombre de fibres de stress (actine) et de structures d'adhésion cellulaire. Bien que les astrocytes non stellaires soient principalement observés in vitro, le défaut de stellation des astrocytes primaires PPARp -/- indique une incapacité à répondre aux différents stimuli extérieurs. Ces phénotypes morphologiques corrèlent avec une migration plus lente en cas de lésion de la culture.Ce travail de thèse a permis de démontrer l'implication de PPARP dans le métabolisme du glucose des astrocytes corticaux. L'absence de ce récepteur nucléaire amène à l'utilisation du glucose intracellulaire, auquel s'ajoutent les effets sur l'import du glutamate et la migration des astrocytes. PPARp aurait des effets neuroprotecteurs, et de ce fait pourrait être utilisé à des fins thérapeutiques.
Resumo:
Patients with glioblastoma (GBM) have variable clinical courses, but the factors that underlie this heterogeneity are not understood. To determine whether the presence of the telomerase-independent alternative lengthening of telomeres (ALTs) mechanism is a significant prognostic factor for survival, we performed a retrospective analysis of 573 GBM patients. The presence of ALT was identified in paraffin sections using a combination of immunofluorescence for promyelocytic leukemia body and telomere fluorescence in situ hybridization. Alternative lengthening of telomere was present in 15% of the GBM patients. Patients with ALT had longer survival that was independent of age, surgery, and other treatments. Mutations in isocitrate dehydrogenase (IDH1mut) 1 frequently accompanied ALT, and in the presence of both molecular events, there was significantly longer overall survival. These data suggest that most ALT+ tumors may be less aggressive proneural GBMs, and the better prognosis may relate to the set of genetic changes associated with this tumor subtype. Despite improved overall survival of patients treated with the addition of chemotherapy to radiotherapy and surgery, ALT and chemotherapy independently provided a survival advantage, but these factors were not found to be additive. These results suggest a critical need for developing new therapies to target these specific GBM subtypes.
Resumo:
Cellular metabolism is emerging as a potential fate determinant in cancer and stem cell biology, constituting a crucial regulator of the hematopoietic stem cell (HSC) pool [1-4]. The extremely low oxygen tension in the HSC microenvironment of the adult bone marrow forces HSCs into a low metabolic profile that is thought to enable their maintenance by protecting them from reactive oxygen species (ROS). Although HSC quiescence has for long been associated with low mitochondrial activity, as testified by the low rhodamine stain that marks primitive HSCs, we hypothesized that mitochondrial activation could be an HSC fate determinant in its own right. We thus set to investigate the implications of pharmacologically modulating mitochondrial activity during bone marrow transplantation, and have found that forcing mitochondrial activation in the post-transplant period dramatically increases survival. Specifically, we examined the mitochondrial content and activation profile of each murine hematopoietic stem and progenitor compartment. Long-term-HSCs (LT-HSC, Lin-cKit+Sca1+ (LKS) CD150+CD34-), short-term-HSCs (ST-HSC, LKS+150+34+), multipotent progenitors (MPPs, LKS+150-) and committed progenitors (PROG, Lin-cKit+Sca1-) display distinct mitochondrial profiles, with both mitochondrial content and activity increasing with differentiation. Indeed, we found that overall function of the hematopoietic progenitor and stem cell compartment can be resolved by mitochondrial activity alone, as illustrated by the fact that low mitochondrial activity LKS cells (TMRM low) can provide efficient long-term engraftment, while high mitochondrial activity LKS cells (TMRM high) cannot engraft in lethally irradiated mice. Moreover, low mitochondrial activity can equally predict efficiency of engraftment within the LT-HSC and ST-HSC compartments, opening the field to a novel method of discriminating a population of transitioning ST-HSCs that retain long-term engraftment capacity. Based on previous experience that a high-fat bone marrow microenvironment depletes short-term hematopoietic progenitors while conserving their long-term counterparts [5], we set to measure HSC mitochondrial activation in high-fat diet fed mice, known to decrease metabolic rate on a per cell basis through excess insulin/IGF-1 production. Congruently, we found lower mitochondrial activation as assessed by flow cytometry and RT-PCR analysis as well as a depletion of the short-term progenitor compartment in high fat versus control chow diet fed mice. We then tested the effects of a mitochondrial activator known to counteract the negative effects of high fat diet. We first analyzed the in vitro effect on HSC cell cycle kinetics, where no significant change in proliferation or division time was found. However, HSCs responded to the mitochondrial activator by increasing asynchrony, a behavior that is thought to directly correlate with asymmetric division [6]. As opposed to high-fat diet fed mice, mice fed with the mitochondrial activator showed an increase in ST-HSCs, while all the other hematopoietic compartments were comparable to mice fed on control diet. Given the dependency on short-term progenitors to rapidly reconstitute hematopoiesis following bone marrow transplantation, we tested the effect of pharmacological mitochondrial activation on the recovery of mice transplanted with a limiting HSC dose. Survival 3 weeks post-transplant was 80% in the treated group compared to 0% in the control group, as predicted by faster recovery of platelet and neutrophil counts. In conclusion, we have found that mitochondrial activation regulates the long-term to short-term HSC transition, unraveling mitochondrial modulation as a valuable drug target for post-transplant therapy. Identification of molecular pathways accountable for the metabolically mediated fate switch is currently ongoing.
Resumo:
BACKGROUND AND AIMS: Data from the literature reveal the contrasting influences of family members and friends on the survival of old adults. On one hand, numerous studies have reported a positive association between social relationships and survival. On the other, ties with children may be associated with an increased risk of disability, whereas ties with friends or other relatives tend to improve survival. A five-year prospective, population-based study of 295 Swiss octogenarians tested the hypothesis that having a spouse, siblings or close friends, and regular contacts with relatives or friends are associated with longer survival, even at a very old age. METHODS: Data were collected through individual interviews, and a Cox regression model was applied to assess the effects of kinship and friendship networks on survival, after adjusting for socio-demographic and health-related variables. RESULTS: Our analyses indicate that the presence of a spouse in the household is not significantly related to survival, whereas the presence of siblings at baseline improves the oldest old's chances of surviving five years later. Moreover, the existence of close friends is a central component in the patterns of social relationships of oldest adults, and one which is significantly associated with survival. Overall, the protective effect of social relationships on survival is more related to the quality of those relationships (close friends) than to the frequency of relationships (regular contacts). CONCLUSIONS: We hypothesize that the existence of siblings or close friends may beneficially affect survival, due to the potential influence on the attitudes of octogenarians regarding health practices and adaptive strategies.
Resumo:
The number of cases of visceral and cutaneous leishmaniasis is increasing globally at an alarming rate irrespective of the region and the leishmaniases are amongst the top emergent diseases in spite of control measures. In the present review attention is drawn to some of the reasons for this. The leishmaniases have expanded beyond their natural ecotopes due to the ecological chaos caused by man and this in turn affects the levels of his exposure to the vectors. Examples of how different phenomana (such as war, civilian migration, immuno-suppression caused by medication and viral infections, globalization of work and leisure and transmission outside endemic areas) contribute to the spread and increase of the disease are discussed.
Resumo:
Machado-Joseph disease or spinocerebellar ataxia type 3, the most common dominantly-inherited spinocerebellar ataxia, results from translation of the polyglutamine-expanded and aggregation prone ataxin 3 protein. Clinical manifestations include cerebellar ataxia and pyramidal signs and there is no therapy to delay disease progression. Beclin 1, an autophagy-related protein and essential gene for cell survival, is decreased in several neurodegenerative disorders. This study aimed at evaluating if lentiviral-mediated beclin 1 overexpression would rescue motor and neuropathological impairments when administered to pre- and post-symptomatic lentiviral-based and transgenic mouse models of Machado-Joseph disease. Beclin 1-mediated significant improvements in motor coordination, balance and gait with beclin 1-treated mice equilibrating longer periods in the Rotarod and presenting longer and narrower footprints. Furthermore, in agreement with the improvements observed in motor function beclin 1 overexpression prevented neuronal dysfunction and neurodegeneration, decreasing formation of polyglutamine-expanded aggregates, preserving Purkinje cell arborization and immunoreactivity for neuronal markers. These data show that overexpression of beclin 1 in the mouse cerebellum is able to rescue and hinder the progression of motor deficits when administered to pre- and post-symptomatic stages of the disease.
Resumo:
Malignant gliomas, notably glioblastoma are among the most vascularized and angiogenic cancers, and microvascular proliferation is one of the hallmarks for the diagnosis of glioblastoma. Angiogenesis is regulated by a balance of pro- and antiangiogenic signals; overexpression of VEGF and activation of its receptors, most notable VEGFR-2 and -3, results in endothelial cell proliferation and leaky vasculature. Heterogeneous perfusion and oxygenation, peritumoral edema and increased interstitial pressure are the consequence. Both endothelial and tumour cells are strongly dependent on integrin-mediated adhesion for cell proliferation, survival, migration and invasion.Strategies aiming at inhibition of cell signaling and angiogenesis, including integrin inhibitors, have been clinically investigated in gliomas over the last 5 years. Radiological responses, a decreased requirement of corticosteroids and temporary improvement in performance status have repeatedly been observed. Toxicity was mild-moderate and manageable, notably there was no evidence for a substantially increased incidence of intracranial bleeding. However definitive comparative (randomized !) investigation has failed to demonstrate improved outcome with singleagent inhibition of EGFR, or PDGFR or VEGF/VEGFRs pathways in recurrent glioblastoma. Definitive phase III trials combining the anti- VEGF monoclonal antibody bevacizumab, or cilengitide, a peptidic integrininhibitor, together with temozolomide and radiotherapy are ongoing (accrual completed).The integration of anti-angiogenic strategies in the management of malignant glioma also poses entirely new challenges in patient management: 1) Many agents are known for increasing the risk of thrombosis, embolism and intracranial bleeding. 2) Evaluation of treatment efficacy is difficult and new biomarkers of activity, including functional, metabolic or molecular imaging techniques are urgently needed. Normalization of vasculature leads to decrease in contrast enhancement without necessarily reflecting tumour shrinkage. Tumour heterogeneity, putative prognostic or predictive factors require early controlled trials, novel trial designs and endpoints.3) Activation of alternate pathways and tumour escape mechanisms may require combination of multiple agents, which is often not feasible due to regulatory restrictions and potential complex toxicities. Emerging clinical and experimental evidence suggests that anti-angiogenic drugs might need to be combined with drugs targeting tumour adaptive mechanisms in addition to cytotoxic chemotherapy and irradiation for a maximal antitumour effect.
Resumo:
Myelodysplastic syndromes (MDS) with del(5q) are considered to have a benign course of the disease. In order to address the issue of the propensity of those patients to progress to acute myeloid leukemia (AML), data on 381 untreated patients with MDS and del(5q) characterized by low or intermediate I International Prognostic Scoring System (IPSS) risk score were collected from nine centers and registries. Median survival of the entire group was 74 months. Transfusion-dependent patients had a median survival of 44 months vs 97 months for transfusion-independent patients (P<0.0001). Transfusion need at diagnosis was the most important patient characteristic for survival. Of the 381 patients, 48 (12.6%) progressed to AML. The cumulative progression rate calculated using the Kaplan-Meier method was 4.9% at 2 years and 17.6% at 5 years. Factors associated with the risk of AML transformation were high-risk World Health Organization adapted Prognostic Scoring System (WPSS) score, marrow blast count >5% and red-cell transfusion dependency at diagnosis. In conclusion, patients with MDS and del(5q) are facing a considerable risk of AML transformation. More detailed cytogenetic and molecular studies may help to identify the patients at risk of progression.
Resumo:
Human B cell-activating factor (BAFF) induces mouse surface IgM+ B cells of the immature type from bone marrow and of the immature types 1 and 2 from spleen, as well as of the mature type from spleen to increased longevity in tissue culture. BAFF does so polyclonally and without inducing proliferation in any of these B cell subpopulations. BAFF induces phenotypic and functional maturation of immature to mature B cells so that all immature cells loose C1qRp (AA4.1, 493) expression and type 1 immature cells up-regulate IgD, CD21 and CD23. Immature B cells of types 1 and 2, upon pre-incubation with BAFF, change their reactiveness to Ig-specific antibodies so that they no longer enter apoptosis but now proliferate. However, BAFF does not seem to overcome negative selection of developing immature B cells in vitro.
Resumo:
The effect of relative humidity (43%, 75%, 86% and > 98%) on Aedes aegypti eggs treated with Metarhizium anisopliae or water only was tested for up to a six months exposure at 25ºC. Survival of larvae inside eggs was clearly affected by the lowest humidity (43%) tested, and eclosion diminished at all humidities after increasing periods of exposure. M. anisopliae showed to have a strong ovicidal activity only at humidity close to saturation. No difference of activity was found between conidia and hyphal bodies tested. This fungus affected larvae inside eggs and has potential as a control agent of this important vector in breeding sites with high moisture.
Resumo:
In patients with myelodysplastic syndrome (MDS) precursor cell cultures (colony-forming unit cells, CFU-C) can provide an insight into the growth potential of malignant myeloid cells. In a retrospective single-center study of 73 untreated MDS patients we assessed whether CFU-C growth patterns were of prognostic value in addition to established criteria. Abnormalities were classified as qualitative (i.e. leukemic cluster growth) or quantitative (i.e. strongly reduced/absent growth). Thirty-nine patients (53%) showed leukemic growth, 26 patients (36%) had strongly reduced/absent colony growth, and 12 patients showed both. In a univariate analysis the presence of leukemic growth was associated with strongly reduced survival (at 10 years 4 vs. 34%, p = 0.004), and a high incidence of transformation to AML (76 vs. 32%, p = 0.01). Multivariate analysis identified leukemic growth as a strong and independent predictor of early death (relative risk 2.12, p = 0.03) and transformation to AML (relative risk 2.63, p = 0.04). Quantitative abnormalities had no significant impact on the disease course. CFU-C assays have a significant predictive value in addition to established prognostic factors in MDS. Leukemic growth identifies a subpopulation of MDS patients with poor prognosis.