927 resultados para DARK ENERGY THEORY
Resumo:
Au catalysis has been one of the hottest topics in chemistry in the last 10 years or so. How O-2 is supplied and what role water plays in CO oxidation are the two challenging issues in the field at the moment. In this study, using density functional theory we show that these two issues are in fact related to each other. The following observations are revealed: (i) water that can dissociate readily into OH groups can facilitate O-2 adsorption on TiO2; (ii) the effect of OH group on the O-2 adsorption is surprisingly long-ranged; and (iii) O-2 can also diffuse along the channel of Ti (5c) atoms on TiO2(1 10), and this may well be the rate-limiting step for the CO oxidation. We provide direct evidence that O-2 is supplied by O-2 adsorption on TiO2 in the presence of OH and can diffuse to the interface of Au/TiO2 to participate in CO oxidation. Furthermore, the physical origin of the water effects on Au catalysis has been identified by electronic structure analyses: There is a charge transfer from TiO2 in the presence of OH to O-2, and the O-2 adsorption energy depends linearly on the 02 charge. These results are of importance to understand water effects in general in heterogeneous catalysis.
Resumo:
An understanding of surface hydrogenation reactivity is a prevailing issue in chemistry and vital to the rational design of future catalysts. In this density-functional theory study, we address hydrogenation reactivity by examining the reaction pathways for N+H -> NH and NH+H -> NH2 over the close-packed surfaces of the 4d transition metals from Zr-Pd. It is found that the minimum-energy reaction pathway is dictated by the ease with which H can relocate between hollow-site and top-site adsorption geometries. A transition state where H is close to a top site reduces the instability associated with bond sharing of metal atoms by H and N (NH) (bonding competition). However, if the energy difference between hollow-site and top-site adsorption energies (Delta E-H) is large this type of transition state is unfavorable. Thus we have determined that hydrogenation reactivity is primarily controlled by the potential-energy surface of H on the metal, which is approximated by Delta E-H, and that the strength of N (NH) chemisorption energy is of less importance. Delta E-H has also enabled us to make predictions regarding the structure sensitivity of these reactions. Furthermore, we have found that the degree of bonding competition at the transition state is responsible for the trend in reaction barriers (E-a) across the transition series. When this effect is quantified a very good linear correlation is found with E-a. In addition, we find that when considering a particular type of reaction pathway, a good linear correlation is found between the destabilizing effects of bonding competition at the transition state and the strength of the forming N-H (HN-H) bond. (c) 2006 American Institute of Physics.
Resumo:
Hydrogenation is an important process in the Fischer-Tropsch synthesis. In this work, all the elementary steps of the hydrogenation from C to CH4 are studied on both flat and stepped Co(0001) using density functional theory (DFT). We found that (i) CH3 hydrogenation (CH3+H-->CH4) is the most difficult one among all the elementary reactions on both surfaces, possessing barriers of around 1.0 eV; (ii) the other elementary reactions have the barriers below 0.9 eV on the flat and stepped surfaces; (iii) CH2 is the least stable species among all the CHx(x=1-3) species on both surfaces; and (iv) surface restructuring may have little effect on the CHx(x=0-3) hydrogenation. The barriers of each elementary step on both flat and stepped surfaces are similar and energy profiles are also similar. The reason as to why CHx hydrogenation is not structure-sensitive is also discussed. (C) 2005 American Institute of Physics.
Resumo:
CO oxidation on PtO2(110) has been studied using density functional theory calculations. Four possible reaction mechanisms were investigated and the most feasible one is the following: (i) the O at the bridge site of PtO2(110) reacts with CO on the coordinatively unsaturated site (CUS) with a negligible barrier; (ii) O-2 adsorbs on the bridge site and then interacts with CO on the CUS to form an OO-CO complex; (iii) the bond of O-OCO breaks to produce CO2 with a small barrier (0.01 eV). The CO oxidation mechanisms on metals and metal oxides are rationalized by a simple model: The O-surface bonding determines the reactivity on surfaces; it also determines whether the atomic or molecular mechanism is preferred. The reactivity on metal oxides is further found to be related to the 3rd ionization energy of the metal atom.
Resumo:
Catalytic formation of N2O via a (NO)(2) intermediate was studied employing density functional theory with generalized gradient approximations. Dimer formation was not favored on Pt(111), in agreement with previous reports. On Pt(211) a variety of dimer structures were studied, including trans-(NO)(2) and cis-(NO)(2) configurations. A possible pathway involving (NO)(2) formation at the terrace near to a Pt step is identified as the possible mechanism for low-temperature N2O formation. The dimer is stabilized by bond formation between one O atom of the dimer and two Pt step atoms. The overall mechanism has a low barrier of approximately 0.32 eV. The mechanism is also put into the context of the overall NO+H-2 reaction. A consideration of the step-wise hydrogenation of O-(ads) from the step is also presented. Removal of O-(ads) from the step is significantly different from O-(ads) hydrogenation on Pt(111). The energetically favored structure at the transition state for OH(ads) formation has an activation energy of 0.63 eV. Further hydrogenation of OH(ads) has an activation energy of 0.80 eV. (C) 2004 American Institute of Physics.
Resumo:
Hydrogenation reaction, as one of the simplest association reactions on surfaces, is of great importance both scientifically and technologically. They are essential steps in many industrial processes in heterogeneous catalysis, such as ammonia synthesis (N-2+3H(2)-->2NH(3)). Many issues in hydrogenation reactions remain largely elusive. In this work, the NHx (x=0,1,2) hydrogenation reactions (N+H-->NH, NH+H-->NH2 and NH2+H-->NH3) on Rh(111) are used as a model system to study the hydrogenation reactions on metal surfaces in general using density-functional theory. In addition, C and O hydrogenation (C+H-->CH and O+H-->OH) and several oxygenation reactions, i.e., C+O, N+O, O+O reactions, are also calculated in order to provide a further understanding of the barrier of association reactions. The reaction pathways and the barriers of all these reactions are determined and reported. For the C, N, NH, and O hydrogenation reactions, it is found that there is a linear relationship between the barrier and the valency of R (R=C, N, NH, and O). Detailed analyses are carried out to rationalize the barriers of the reactions, which shows that: (i) The interaction energy between two reactants in the transition state plays an important role in determining the trend in the barriers; (ii) there are two major components in the interaction energy: The bonding competition and the direct Pauli repulsion; and (iii) the Pauli repulsion effect is responsible for the linear valency-barrier trend in the C, N, NH, and O hydrogenation reactions. For the NH2+H reaction, which is different from other hydrogenation reactions studied, the energy cost of the NH2 activation from the IS to the TS is the main part of the barrier. The potential energy surface of the NH2 on metal surfaces is thus crucial to the barrier of NH2+H reaction. Three important factors that can affect the barrier of association reactions are generalized: (i) The bonding competition effect; (ii) the local charge densities of the reactants along the reaction direction; and (iii) the potential energy surface of the reactants on the surface. The lowest energy pathway for a surface association reaction should correspond to the one with the best compromise of these three factors. (C) 2003 American Institute of Physics.
Resumo:
Gold-based catalysts have been of intense interests in recent years, being regarded as a new generation of catalysts due to their unusually high catalytic performance. For example, CO oxidation on Au/TiO2 has been found to occur at a temperature as low as 200 K. Despite extensive studies in the field, the microscopic mechanism of CO oxidation on Au-based catalysts remains controversial. Aiming to provide insight into the catalytic roles of Au, we have performed extensive density functional theory calculations for the elementary steps in CO oxidation on Au surfaces. O atom adsorption, CO adsorption, O-2 dissociation, and CO oxidation on a series of Au surfaces, including flat surfaces, defects and small clusters, have been investigated in detail. Many transition states involved are located, and the lowest energy pathways are determined. We find the following: (i) the most stable site for O atom on Au is the bridge site of step edge, not a kink site; (ii) O-2 dissociation on Au (O-2-->20(ad)) is hindered by high barriers with the lowest barrier being 0.93 eV on a step edge; (iii) CO can react with atomic O with a substantially lower barrier, 0.25 eV, on Au steps where CO can adsorb; (iv) CO can react with molecular O-2 on Au steps with a low barrier of 0.46 eV, which features an unsymmetrical four-center intermediate state (O-O-CO); and (v) O-2 can adsorb on the interface of Au/TiO2 with a reasonable chemisorption energy. On the basis of our calculations, we suggest that (i) O-2 dissociation on Au surfaces including particles cannot occur at low temperatures; (ii) CO oxidation on Au/inactive-materials occurs on Au steps via a two-step mechanism: CO+O-2-->CO2+O, and CO+O-->CO2; and (iii) CO oxidation on Au/active-materials also follows the two-step mechanism with reactions occurring at the interface.
Resumo:
Density functional theory (DFT) has been used to determine reaction pathways for several reactions taking place on Pt(111) and Cu(111) surfaces. On Pt(111), the reactions of C+O and C+N were studied, and on Cu(111) we investigated the reaction of C+H. The structures of the transition states accessed in each reaction are similar. An equivalent distance separates the reactants with the first located at a three-fold hollow site and the second close to a bridge site. Previous DFT studies have, in fact, often identified transition states of this type and in every case it is the reactant with the weaker chemisorption energy that is located close to the bridge site. An explanation as to why this is so is provided. (C) 2001 American Institute of Physics.
Resumo:
Density functional theory has been used to study the adsorption of hydroxyl at low and high coverages and also to investigate the nature of the intermediate in the H2O formation reaction on Pt(111). At low coverages [1/9 of a monolayer (ML) to 1/3 ML] OH binds preferentially at bridge and top sites with a chemisorption energy of similar to2.25 eV. At high coverages (1/2 ML to 1 ML) H bonding between adjacent hydroxyls causes: (i) an enhancement in OH chemisorption energy by about 15%; (ii) a strong preference for OH adsorption at top sites; and (iii) the formation of OH networks. The activation energy for the diffusion of isolated OH groups along close packed rows of Pt atoms is 0.1 eV. This low barrier coupled with H bonding between neighboring OH groups indicates that hydroxyls are susceptible to island formation at low coverages. Pure OH as well as coadsorbed OH and H can be ruled out as the observed low temperature intermediate in the water formation reaction. Instead we suggest that the intermediate consists of a mixed OH+H2O overlayer with a macroscopic surface coverage of 3/4 ML in a 2:1 ratio of OH and H2O. (C) 2001 American Institute of Physics.
Resumo:
Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH2CHCNH+, have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at~2meV relative kinetic energy about 50% of the DR events involve only ruptures of X–H bonds (where X=C or N)while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H2). The absolute DR cross section has been investigated for relative kinetic energies ranging from ~1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 × 10-6 (T/300)-0.80 cm3 s-1 for electron temperatures ranging from ~10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan’s upper atmosphere are discussed.
Resumo:
Ab initio calculations for the strongly exoergic Li2+F harpoon reaction are presented using density-functional theory, complete active space self-consistent field, and multireference configuration interaction methods to argue that this reaction would be an ideal candidate for investigation with ultracold molecules. The lowest six states are calculated with the aug-correlation-consistent polarized valence triple-zeta basis set and at least two can be accessed by a ground rovibronic Li2 molecule with zero collision energy at all reaction geometries. The large reactive cross section (characteristic of harpoon reactions) and chemiluminescent products are additional attractive features of these reactions.
Absolute photoionization cross sections for Xe4+, Xe5+, and Xe6+ near 13.5 nm: Experiment and theory
Resumo:
Absolute photoionization cross-section measurements for a mixture of ground and metastable states of Xe4+, Xe5+, and Xe6+ are reported in the photon energy range of 4d -> nf transitions, which occur within or adjacent to the 13.5 nm window for extreme ultraviolet lithography light source development. The reported values allow the quantification of opacity effects in xenon plasmas due to these 4d -> nf autoionizing states. The oscillator strengths for the 4d -> 4f and 4d -> 5f transitions in Xeq+ (q=1-6) ions are calculated using nonrelativistic Hartree-Fock and random phase approximations. These are compared with published experimental values for Xe+ to Xe3+ and with the values obtained from the present experimental cross-section measurements for Xe4+ to Xe6+. The calculations assisted in the determination of the metastable content in the ion beams for Xe5+ and Xe6+. The experiments were performed by merging a synchrotron photon beam generated by an undulator beamline of the Advanced Light Source with an ion beam produced by an electron cyclotron resonance ion source.
Resumo:
A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.
Resumo:
The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae.