982 resultados para Cyp1a1 Polymorphisms
Resumo:
Context: There is great interindividual variability in the response to recombinant human (rh) GH therapy in patients with Turner syndrome (TS). Ascertaining genetic factors can improve the accuracy of growth response predictions. Objective: The objective of the study was to assess the individual and combined influence of GHR-exon 3 and -202 A/C IGFBP3 polymorphisms on the short-and long-term outcomes of rhGH therapy in patients with TS. Design and Patients: GHR-exon 3 and -202 A/C IGFBP3 genotyping (rs2854744) was correlated with height data of 112 patients with TS who remained prepubertal during the first year of rhGH therapy and 65 patients who reached adult height after 5 +/- 2.5 yr of rhGH treatment. Main Outcome Measures: First-year growth velocity and adult height were measured. Results: Patients carrying at least one GHR-d3 or -202 A-IGFBP3 allele presented higher mean first-year growth velocity and achieved taller adult heights than those homozygous for GHR-fl or -202 C-IGFBP3 alleles, respectively. The combined analysis of GHR-exon 3 and -202 A/C IGFBP3 genotypes showed a clear nonadditive epistatic influence on adult height of patients with TS treated with rhGH (GHR-exon 3 alone, R-2 = 0.27; -202 A/C IGFBP3, R-2 = 0.24; the combined genotypes, R-2 = 0.37 at multiple linear regression). Together with clinical factors, these genotypes accounted for 61% of the variability in adult height of patients with TS after rhGH therapy. Conclusion: Homozygosity for the GHR-exon3 full-length allele and/or the -202C-IGFBP3 allele are associated with less favorable short-and long-term growth outcomes after rhGH treatment in patients with TS. (J Clin Endocrinol Metab 97: E671-E677, 2012)
Resumo:
Obsessive-compulsive disorder (OCD) is a prevalent psychiatric disorder of unknown etiology. However, there is some evidence that the immune system may play an important role in its pathogenesis. In the present study, two polymorphisms (rs1800795 and rs361525) in the promoter region of the cytokine tumor necrosis factor-alpha (TNFA) gene were genotyped in 183 OCD patients and in 249 healthy controls. The statistical tests were performed using the PLINK (R) software. We found that the A allele of the TNFA rs361525 polymorphism was significantly associated with OCD subjects, according to the allelic x association test (p=0.007). The presence of genetic markers, such as inflammatory cytokines genes linked to OCD, may represent additional evidence supporting the rote of the immune system in its pathogenesis.
Resumo:
Individuals with Down syndrome (DS) carry three copies of the Cystathionine beta-synthase (C beta S) gene. The increase in the dosage of this gene results in an altered profile of metabolites involved in the folate pathway, including reduced homocysteine (Hcy), methionine, S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM). Furthermore, previous studies in individuals with DS have shown that genetic variants in genes involved in the folate pathway influence the concentrations of this metabolism's products. The purpose of this study is to investigate whether polymorphisms in genes involved in folate metabolism affect the plasma concentrations of Hcy and methylmalonic acid (MMA) along with the concentration of serum folate in individuals with DS. Twelve genetic polymorphisms were investigated in 90 individuals with DS (median age 1.29 years, range 0.07-30.35 years; 49 male and 41 female). Genotyping for the polymorphisms was performed either by polymerase chain reaction (PCR) based techniques or by direct sequencing. Plasma concentrations of Hcy and MMA were measured by liquid chromatography-tandem mass spectrometry as previously described, and serum folate was quantified using a competitive immunoassay. Our results indicate that the MTHFR C677T, MTR A2756G, TC2 C776G and BHMT G742A polymorphisms along with MMA concentration are predictors of Hcy concentration. They also show that age and Hcy concentration are predictors of MMA concentration. These findings could help to understand how genetic variation impacts folate metabolism and what metabolic consequences these variants have in individuals with trisomy 21.
Resumo:
CD80 and CD86 are closely linked genes on chromosome 3 that code for glycoproteins of the immunoglobulin superfamily, expressed on the surface of antigen-presenting cells. These costimulatory molecules play essential roles for stimulation and inhibition of T cells through binding to CD28 and CTLA-4 receptors. In this study, CD80 promoter and CD86 exon 8 polymorphisms were analyzed to investigate the genetic diversity and microevolution of the 2 genes. We genotyped 1,124 individuals, including Brazilians of predominantly European, mixed African and European, and Japanese ancestry, 5 Amerindian populations, and an African sample. All variants were observed in Africans, which suggests their origin in Africa before the human migrations out of that continent. Five new CD80 promoter alleles were identified and confirmed by cloning and sequencing, and promoter 2 is most likely the ancestral allele. Nucleotide -79 is monomorphic in 4 Amerindian populations, where the presence of the -79 G allele is probably the result of gene flow from non-Amerindians. (C) 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Resumo:
Increased expression and activity of inducible nitric oxide synthase (iNOS) may contribute to the pathogenesis of pre-eclampsia (PE) and gestational hypertension (GH). However, no previous study has examined whether genetic polymorphisms in the iNOS gene are associated with PE or GH. We examined whether two functional, clinically relevant iNOS genetic polymorphisms (the C(-1026)A polymorphism, rs2779249, in the promoter region, and the G2087A polymorphism, rs2297518, in exon 16) are associated with GH or with PE. We studied 565 pregnant women: 212 healthy pregnant (HP), 166 pregnant with GH and 187 pregnant with PE. Genotypes were determined by real-time PCR, using the Taqman allele discrimination assay. The PHASE 2.1 program was used to estimate haplotype distributions in the three study groups. We found no significant association between the C(-1026)A polymorphism and PE or GH (P>0.05). However, we found the GA genotype and the A allele for the G2087A polymorphism at higher frequency in PE, but not in GH, compared with HP (P<0.05). The haplotype analysis showed no significant intergroup differences (P>0.05). These findings suggest that iNOS genetic variants may affect the susceptibility to PE, but not to GH. Journal of Human Hypertension (2012) 26, 547-552; doi:10.1038/jhh.2011.65; published online 30 June 2011
Resumo:
Background: Cytokines secreted by the adipose tissue influence inflammation and insulin sensitivity, and lead to metabolic disturbances. How certain single-nucleotide polymorphisms (SNPs) interfere on lifestyle interventions is unclear. We assessed associations of selected SNPs with changes induced by a lifestyle intervention. Methods: This 9-month intervention on diet and physical activity included 180 Brazilians at high cardiometabolic risk, genotyped for the TNF-alpha -308 G/A, IL-6 -174 G/C and AdipoQ 45 T/G SNPs. Changes in metabolic and inflammatory variables were analyzed according to these SNPs. Individuals with at least one variant allele were grouped and compared with those with the reference genotype. Results: In the entire sample (66.7% women; mean age 56.5 +/- 11.6 years), intervention resulted in lower energy intake, higher physical activity, and improvement in anthropometry, plasma glucose, HOMA-IR, lipid profile and inflammatory markers, except for IL-6 concentrations. After intervention, only variant allele carriers of the TNF-alpha -308 G/A decreased plasma glucose, after adjusting for age and gender (OR 2.96, p = 0.025). Regarding the IL-6 -174 G/C SNP, carriers of the variant allele had a better response of lipid profile and adiponectin concentration, but only the reference genotype group decreased plasma glucose. In contrast to individuals with the reference genotype, carriers of variant allele of AdipoQ 45 T/G SNP did not change plasma glucose, apolipoprotein B, HDL-c and adiponectin concentrations in response to intervention. Conclusion: The TNF alpha -308 G/A SNP may predispose a better response of glucose metabolism to lifestyle intervention. The IL-6 -174 G/C SNP may confer a beneficial effect on lipid but not on glucose metabolism. Our findings reinforce unfavorable effects of the AdipoQ 45 T/G SNP in lipid profile and glucose metabolism after intervention in Brazilians at cardiometabolic risk. Further studies are needed to direct lifestyle intervention to subsets of individuals at cardiometabolic risk.
Resumo:
Abstract Background N-acetyltransferase type 2 (Nat2) is a phase II drug- metabolizing enzyme that plays a key role in the bioactivation of aromatic and heterocyclic amines. Its relevance in drug metabolism and disease susceptibility remains a central theme for pharmacogenetic research, mainly because of its genetic variability among human populations. In fact, the evolutionary and ethnic-specific SNPs on the NAT2 gene remain a focus for the potential discoveries in personalized drug therapy and genetic markers of diseases. Despite the wide characterization of NAT2 SNPs frequency in established ethnic groups, little data are available for highly admixed populations. In this context, five common NAT2 SNPs (G191A, C481T, G590A, A803G and G857A) were investigated in a highly admixed population comprised of Afro-Brazilians, Whites, and Amerindians in northeastern Brazil. Thus, we sought to determine whether the distribution of NAT2 polymorphism is different among these three ethnic groups. Results Overall, there were no statistically significant differences in the distribution of NAT2 polymorphism when Afro-Brazilian and White groups were compared. Even the allele frequency of 191A, relatively common in African descendents, was not different between the Afro-Brazilian and White groups. However, allele and genotype frequencies of G590A were significantly higher in the Amerindian group than either in the Afro-Brazilian or White groups. Interestingly, a haplotype block between G590A and A803G was verified exclusively among Amerindians. Conclusions Our results indicate that ethnic admixture might contribute to a particular pattern of genetic diversity in the NAT2 gene and also offer new insights for the investigation of possible new NAT2 gene-environment effects in admixed populations.
Resumo:
Abstract Background The Vitamin D Receptor gene (VDR) is expressed in many tissues and modulates the expression of several other genes. The purpose of this study was to investigate the association between metabolic syndrome (MetSyn) with the presence of VDR 2228570 C > T and VDR 1544410 A > G polymorphisms in Brazilian adults. Methods Two hundred forty three (243) individuals were included in a cross-sectional study. MetSyn was classified using the criteria proposed by National Cholesterol Educational Program - Adult Treatment Panel III. Insulin resistance and β cell secretion were estimated by the mathematical models of HOMA IR and β, respectively. The VDR 2228570 C > T and VDR 1544410 A > G polymorphisms were detected by enzymatic digestion and confirmed by allele specific PCR or amplification of refractory mutation. Results Individuals with MetSyn and heterozygosis for VDR 2228570 C > T have higher concentrations of iPTH and HOMA β than those without this polymorphism, and subjects with recessive homozygosis for the same polymorphisms presented higher insulin resistance than those with the heterozygous genotype. There is no association among VDR 1544410 A > G and components of MetSyn, HOMA IR and β, serum vitamin D (25(OH)D3) and intact parathormone (iPTH) levels in patients with MetSyn. A significant lower concentration of 25(OH)D3 was observed only in individuals without MetSyn in the VDR 1544410 A > G genotype. Additionally, individuals without MetSyn and heterozygosis for VDR 2228570 C > T presented higher concentration of triglycerides and lower HDL than those without this polymorphism. Conclusions Using two common VDR polymorphism data suggests they may influence insulin secretion, insulin resistance an serum HDL-cholesterol in our highly heterogeneous population. Whether VDR polymorphism may influence the severity of MetSyn component disorder, warrants examination in larger cohorts used for genome-wide association studies.
Resumo:
Abstract Background The generalized odds ratio (GOR) was recently suggested as a genetic model-free measure for association studies. However, its properties were not extensively investigated. We used Monte Carlo simulations to investigate type-I error rates, power and bias in both effect size and between-study variance estimates of meta-analyses using the GOR as a summary effect, and compared these results to those obtained by usual approaches of model specification. We further applied the GOR in a real meta-analysis of three genome-wide association studies in Alzheimer's disease. Findings For bi-allelic polymorphisms, the GOR performs virtually identical to a standard multiplicative model of analysis (e.g. per-allele odds ratio) for variants acting multiplicatively, but augments slightly the power to detect variants with a dominant mode of action, while reducing the probability to detect recessive variants. Although there were differences among the GOR and usual approaches in terms of bias and type-I error rates, both simulation- and real data-based results provided little indication that these differences will be substantial in practice for meta-analyses involving bi-allelic polymorphisms. However, the use of the GOR may be slightly more powerful for the synthesis of data from tri-allelic variants, particularly when susceptibility alleles are less common in the populations (≤10%). This gain in power may depend on knowledge of the direction of the effects. Conclusions For the synthesis of data from bi-allelic variants, the GOR may be regarded as a multiplicative-like model of analysis. The use of the GOR may be slightly more powerful in the tri-allelic case, particularly when susceptibility alleles are less common in the populations.
Resumo:
Abstract Background Cytokines secreted by the adipose tissue influence inflammation and insulin sensitivity, and lead to metabolic disturbances. How certain single-nucleotide polymorphisms (SNPs) interfere on lifestyle interventions is unclear. We assessed associations of selected SNPs with changes induced by a lifestyle intervention. Methods This 9-month intervention on diet and physical activity included 180 Brazilians at high cardiometabolic risk, genotyped for the TNF-α -308 G/A, IL-6 -174 G/C and AdipoQ 45 T/G SNPs. Changes in metabolic and inflammatory variables were analyzed according to these SNPs. Individuals with at least one variant allele were grouped and compared with those with the reference genotype. Results In the entire sample (66.7% women; mean age 56.5 ± 11.6 years), intervention resulted in lower energy intake, higher physical activity, and improvement in anthropometry, plasma glucose, HOMA-IR, lipid profile and inflammatory markers, except for IL-6 concentrations. After intervention, only variant allele carriers of the TNF-α -308 G/A decreased plasma glucose, after adjusting for age and gender (OR 2.96, p = 0.025). Regarding the IL6 -174 G/C SNP, carriers of the variant allele had a better response of lipid profile and adiponectin concentration, but only the reference genotype group decreased plasma glucose. In contrast to individuals with the reference genotype, carriers of variant allele of AdipoQ 45 T/G SNP did not change plasma glucose, apolipoprotein B, HDL-c and adiponectin concentrations in response to intervention. Conclusion The TNFα -308 G/A SNP may predispose a better response of glucose metabolism to lifestyle intervention. The IL-6 -174 G/C SNP may confer a beneficial effect on lipid but not on glucose metabolism. Our findings reinforce unfavorable effects of the AdipoQ 45 T/G SNP in lipid profile and glucose metabolism after intervention in Brazilians at cardiometabolic risk. Further studies are needed to direct lifestyle intervention to subsets of individuals at cardiometabolic risk.
Resumo:
[EN] The exon-1 of the androgen receptor (AR) gene contains two repeat length polymorphisms which modify either the amount of AR protein inside the cell (GGN(n), polyglycine) or its transcriptional activity (CAG(n), polyglutamine). Shorter CAG and/or GGN repeats provide stronger androgen signalling and vice versa. To test the hypothesis that CAG and GGN repeat AR polymorphisms affect muscle mass and various variables of muscular strength phenotype traits, the length of CAG and GGN repeats was determined by PCR and fragment analysis and confirmed by DNA sequencing of selected samples in 282 men (28.6 +/- 7.6 years). Individuals were grouped as CAG short (CAG(S)) if harbouring repeat lengths of 21. GGN was considered short (GGN(S)) or long (GGN(L)) if GGN 23, respectively. No significant differences in lean body mass or fitness were observed between the CAG(S) and CAG(L) groups, or between GGN(S) and GGN(L) groups, but a trend for a correlation was found for the GGN repeat and lean mass of the extremities (r=-0.11, p=0.06). In summary, the lengths of CAG and GGN repeat of the AR gene do not appear to influence lean mass or fitness in young men.
Resumo:
[EN] BACKGROUND: To determine whether androgen receptor (AR) CAG (polyglutamine) and GGN (polyglycine) polymorphisms influence bone mineral density (BMD), osteocalcin and free serum testosterone concentration in young men. METHODOLOGY/PRINCIPAL FINDINGS: Whole body, lumbar spine and femoral bone mineral content (BMC) and BMD, Dual X-ray Absorptiometry (DXA), AR repeat polymorphisms (PCR), osteocalcin and free testosterone (ELISA) were determined in 282 healthy men (28.6+/-7.6 years). Individuals were grouped as CAG short (CAG(S)) if harboring repeat lengths of < or = 21 or CAG long (CAG(L)) if CAG > 21, and GGN was considered short (GGN(S)) or long (GGN(L)) if GGN < or = 23 or > 23. There was an inverse association between logarithm of CAG and GGN length and Ward's Triangle BMC (r = -0.15 and -0.15, P<0.05, age and height adjusted). No associations between CAG or GGN repeat length and regional BMC or BMD were observed after adjusting for age. Whole body and regional BMC and BMD values were similar in men harboring CAG(S), CAG(L), GGN(S) or GGN(L) AR repeat polymorphisms. Men harboring the combination CAG(L)+GGN(L) had 6.3 and 4.4% higher lumbar spine BMC and BMD than men with the haplotype CAG(S)+GGN(S) (both P<0.05). Femoral neck BMD was 4.8% higher in the CAG(S)+GGN(S) compared with the CAG(L)+GGN(S) men (P<0.05). CAG(S), CAG(L), GGN(S), GGN(L) men had similar osteocalcin concentration as well as the four CAG-GGN haplotypes studied. CONCLUSION: AR polymorphisms have an influence on BMC and BMD in healthy adult humans, which cannot be explained through effects in osteoblastic activity.
Resumo:
Cytochrome P450 1A1 (CYP1A1) monooxygenase plays an important role in the metabolism of environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) and halogenated polycyclic aromatic hydrocarbons (HAHs). Oxidation of these compounds converts them to the metabolites that subsequently can be conjugated to hydrophilic endogenous entities e.g. glutathione. Derivates generated in this way are water soluble and can be excreted in bile or urine, which is a defense mechanism. Besides detoxification, metabolism by CYP1A1 may lead to deleterious effects since the highly reactive intermediate metabolites are able to react with DNA and thus cause mutagenic effects, as it is in the case of benzo(a) pyrene (B[a]P). CYP1A1 is normally not expressed or expressed at a very low level in the cells but it is inducible by many PAHs and HAHs e.g. by B[a]P or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Transcriptional activation of the CYP1A1 gene is mediated by aryl hydrocarbon receptor (AHR), a basic-helix-loop-helix (bHLH) transcription factor. In the absence of a ligand AHR stays predominantly in the cytoplasm. Ligand binding causes translocation of AHR to the nuclear compartment, its heterodimerization with another bHLH protein, the aryl hydrocarbon nuclear translocator (ARNT) and binding of the AHR/ARNT heterodimer to a DNA motif designated dioxin responsive element (DRE). This process leads to the transcriptional activation of the responsive genes containing DREs in their regulatory regions, e.g. that coding for CYP1A1. TCDD is the most potent known agonist of AHR. Since it is not metabolized by the activated enzymes, exposure to this compound leads to a persisting activation of AHR resulting in diverse toxic effects in the organism. To enlighten the molecular mechanisms that mediate the toxicity of xenobiotics like TCDD and related compounds, the AHR-dependent regulation of the CYP1A1 gene was investigated in two cell lines: human cervix carcinoma (HeLa) and mouse hepatoma (Hepa). Study of AHR activation and its consequence concerning expression of the CYP1A1 enzyme confirmed the TCDD-dependent formation of the AHR/ARNT complex on DRE leading to an increase of the CYP1A1 transcription in Hepa cells. In contrast, in HeLa cells formation of the AHR/ARNT heterodimer and binding of a protein complex containing AHR and ARNT to DRE occurred naturally in the absence of TCDD. Moreover, treatment with TCDD did not affect the AHR/ARNT dimer formation and binding of these proteins to DRE in these cells. Even though the constitutive complex on DRE exists in HeLa, transcription of the CYP1A1 gene was not increased. Furthermore, the CYP1A1 level in HeLa cells remained unchanged in the presence of TCDD suggesting repressional mechanism of the AHR complex function which may hinder the TCDD-dependent mechanisms in these cells. Similar to the native, the mouse CYP1A1-driven reporter constructs containing different regulatory elements were not inducible by TCDD in HeLa cells, which supported a presence of cell type specific trans-acting factor in HeLa cells able to repress both the native CYP1A1 and CYP1A1-driven reporter genes rather than species specific differences between CYP1A1 genes of human and rodent origin. The different regulation of the AHR-mediated transcription of CYP1A1 gene in Hepa and HeLa cells was further explored in order to elucidate two aspects of the AHR function: (I) mechanism involved in the activation of AHR in the absence of exogenous ligand and (II) factor that repress function of the exogenous ligand-independent AHR/ARNT complex. Since preliminary studies revealed that the activation of PKA causes an activation of AHR in Hepa cells in the absence of TCDD, the PKA-dependent signalling pathway was the proposed endogenous mechanism leading to the TCDD-independent activation of AHR in HeLa cells. Activation of PKA by forskolin or db-cAMP as well as inhibition of the kinase by H89 in both HeLa and Hepa cells did not lead to alterations in the AHR interaction with ARNT in the absence of TCDD and had no effect on binding of these proteins to DRE. Moreover, the modulators of PKA did not influence the CYP1A1 activity in these cells in the presence and in the absence of TCDD. Thus, an involvement of PKA in the regulation of the CYP1A1 Gen in HeLa cells was not evaluated in the course of this study. Repression of genes by transcription factors bound to their responsive elements in the absence of ligands has been described for nuclear receptors. These receptors interact with protein complex containing histone deacetylase (HDAC), enzyme responsible for the repressional effect. Thus, a participation of histone deacetylase in the transcriptional modulation of CYP1A1 gene by the constitutively DNA-bound AHR/ARNT complex was supposed. Inhibition of the HDAC activity by trichostatin A (TSA) or sodium butyrate (NaBu) led to an increase of the CYP1A1 transcription in the presence but not in the absence of TCDD in Hepa and HeLa cells. Since amount of the AHR and ARNT proteins remained unchanged upon treatment of the cells with TSA or NaBu, the transcriptional upregulation of CYP1A1 gene was not due to an increased expression of the regulatory proteins. These findings strongly suggest an involvement of HDAC in the repression of the CYP1A1 gene. Similar to the native human CYP1A1 also the mouse CYP1A1-driven reporter gene transfected into HeLa cells was repressed by histone deacetylase since the presence of TSA or NaBu led to an increase in the reporter activity. Induction of reporter gene did not require a presence of the promoter or negative regulatory regions of the CYP1A1 gene. A promoter-distal fragment containing three DREs together with surrounding sequences was sufficient to mediate the effects of the HDAC inhibitors suggesting that the AHR/ARNT binding to its specific DNA recognition site may be important for the CYP1A1 repression. Histone deacetylase is recruited to the specific genes by corepressors, proteins that bind to the transcription factors and interact with other members of the HDAC complex. Western blot analyses revealed a presence of HDAC1 and the corepressors mSin3A (mammalian homolog of yeast Sin3) and SMRT (silencing mediator for retinoid and thyroid hormone receptor) in both cell types, while the corepressor NCoR (nuclear receptor corepressor) was expressed exclusively in HeLa cells. Thus the high inducibility of CYP1A1 in Hepa cells may be due to the absence of NCoR in these cells in contrast to the non-responsive HeLa cells, where the presence of NCoR would support repression of the gene by histone deacetylase. This hypothesis was verified in reporter gene experiments where expression constructs coding for the particular members of the HDAC complex were cotransfected in Hepa cells together with the TCDD-inducible reporter constructs containing the CYP1A1 regulatory sequences. An overexpression of NCoR however did not decrease but instead led to a slight increase of the reporter gene activity in the cells. The expected inhibition was observed solely in the case of SMRT that slightly reduced constitutive and TCDD-induced reporter gene activity. A simultaneous expression of NCoR and SMRT shown no further effects and coexpression of HDAC1 with the two corepressors did not alter this situation. Thus, additional factors that are likely involved in the repression of CYP1A1 gene by HDAC complex remained to be identified. Taking together, characterisation of an exogenous ligand independent AHR/ARNT complex on DRE in HeLa cells that repress transcription of the CYP1A1 gene creates a model system enabling investigation of endogenous processes involved in the regulation of AHR function. This study implicates HDAC-mediated repression of CYP1A1 gene that contributes to the xenobiotic-induced expression in a tissue specific manner. Elucidation of these processes gains an insight into mechanisms leading to deleterious effects of TCDD and related compounds.
Resumo:
The principle aim of this study was to investigate biological predictors of response and resistance to multiple myeloma treatment. Two hypothesis had been proposed as responsible of responsiveness: SNPs in DNA repair and Folate pathway, and P-gp dependent efflux. As a first objective, panel of SNPs in DNA repair and Folate pathway genes, were analyzed. It was a retrospective study in a group of 454, previously untreated, MM patients enrolled in a randomized phase III open-label study. Results show that some SNPs in Folate pathway are correlated with response to MM treatment. MTR genotype was associated with favorable response in the overall population of MM patients. However, this relation, disappear after adjustment for treatment response. When poor responder includes very good partial response, partial response and stable/progressive disease MTFHR rs1801131 genotype was associated with poor response to therapy. This relation - unlike in MTR – was still significant after adjustment for treatment response. Identification of this genetic variant in MM patients could be used as an independent prognostic factor for therapeutic outcome in the clinical practice. In the second objective, basic disposition characteristics of bortezomib was investigated. We demonstrated that bortezomib is a P-gp substrate in a bi-directional transport study. We obtain apparent permeability rate values that together with solubility values can have a crucial implication in better understanding of bortezomib pharmacokinetics with respect to the importance of membrane transporters. Subsequently, in view of the importance of P-gp for bortezomib responsiveness a panel of SNPs in ABCB1 gene - coding for P-gp - were analyzed. In particular we analyzed five SNPs, none of them however correlated with treatment responsiveness. However, we found a significant association between ABCB1 variants and cytogenetic abnormalities. In particular, deletion of chromosome 17 and t(4;14) translocation were present in patients harboring rs60023214 and rs2038502 variants respectively.
Resumo:
Background. Abiraterone acetate is a potent inhibitor of cytochrome P450 17 α-hydrolase (CYP17A1) that causes a reduction in the synthesis of testosterone in the adrenal glands, testes and tumor microenvironment. Blocking androgen production, abiraterone has been shown to prolong progression-free survival (PFS) and overall survival (OS) in patients with metastatic castration-resistant prostate cancer (CRPC) previously submitted to chemotherapy. The aim of our study was to verify the role of single nucleotide polymorphisms (SNPs) in predicting clinical outcome in CRPC patients treated with abiraterone after chemotherapy. Methods. We analyzed 48 CRPC consecutive patients treated with abiraterone after at least one chemotherapeutic regimen with docetaxel. DNA was extracted from peripheral blood and genotyped for four polymorphisms in the CYP17A1 gene (rs743572, rs10883783, rs17115100, rs284849). PFS and OS survival curves were used to identify statistical associations between haplotypes and clinical outcome. Results. Forty-eight Caucasian patients with metastatic CRPC treated with abiraterone were genotyped for polymorphisms in the CYP17A1 gene. All samples were evaluable for both sequencing and TaqMan Genotyping assay. The CRPC patients treated with abiraterone had a median PFS and OS of 7.6 months (95% CI: 4.3-10.5) and 17.6 months (95% CI: 10.5-19.0), respectively Statistical analyses highlighted a difference approaching statistical significance (log-rank test p = 0.0534) between rs10883783 and PFS. Other polymorphisms were not associated with a benefit from treatment with abiraterone. Conclusions. In our case series of 48 treated patients, rs10883783 only was identified as a possible predictive marker, results showing a trend toward statistical significance. Further analysis of this polymorphism is needed in larger series of patients to confirm our findings.