984 resultados para Current events.
Resumo:
Form factors are derived for a model describing the coherent Josephson tunneling between two coupled Bose-Einstein condensates. This is achieved by studying the exact solution of the model within the framework of the algebraic Bethe ansatz. In this approach the form factors are expressed through determinant representations which are functions of the roots of the Bethe ansatz equations.
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.
Resumo:
The importance of founder events in promoting evolutionary changes on islands has been a subject of long-running controversy. Resolution of this debate has been hindered by a lack of empirical evidence from naturally founded island populations. Here we undertake a genetic analysis of a series of historically documented, natural colonization events by the silvereye species-complex (Zosterops lateralis), a group used to illustrate the process of island colonization in the original founder effect model. Our results indicate that single founder events do not affect levels of heterozygosity or allelic diversity, nor do they result in immediate genetic differentiation between populations. Instead, four to five successive founder events are required before indices of diversity and divergence approach that seen in evolutionarily old forms. A Bayesian analysis based on computer simulation allows inferences to be made on the number of effective founders and indicates that founder effects are weak because island populations are established from relatively large flocks. Indeed, statistical support for a founder event model was not significantly higher than for a gradual-drift model for all recently colonized islands. Taken together, these results suggest that single colonization events in this species complex are rarely accompanied by severe founder effects, and multiple founder events and/or long-term genetic drift have been of greater consequence for neutral genetic diversity.
Resumo:
In this paper an approach to extreme event control in wastewater treatment plant operation by use of automatic supervisory control is discussed. The framework presented is based on the fact that different operational conditions manifest themselves as clusters in a multivariate measurement space. These clusters are identified and linked to specific and corresponding events by use of principal component analysis and fuzzy c-means clustering. A reduced system model is assigned to each type of extreme event and used to calculate appropriate local controller set points. In earlier work we have shown that this approach is applicable to wastewater treatment control using look-up tables to determine current set points. In this work we focus on the automatic determination of appropriate set points by use of steady state and dynamic predictions. The performance of a relatively simple steady-state supervisory controller is compared with that of a model predictive supervisory controller. Also, a look-up table approach is included in the comparison, as it provides a simple and robust alternative to the steady-state and model predictive controllers, The methodology is illustrated in a simulation study.
Resumo:
Histological studies of ischaemic liver injury performed between 1962 and 1964 distinguished two types of cell death: classical necrosis, and a process involving conversion of scattered cells into small round masses of cytoplasm that often contained specks of condensed nuclear chromatin. Enzyme histochemistry demonstrated rupture of lysosomes in the former, but preservation of lysosomes in the latter. Similar small round masses were also observed sparsely in normal liver. Electron microscopy showed that the small round bodies resulted from cellular condensation and budding, that they were bounded by membranes and contained intact organelles, and that they were phagocytosed and digested by resident tissue cells, including epithelial cells. In work done in association with Jeffrey Searle, the process was found to occur spontaneously in a variety of malignant tumours and to be enhanced in squamous cell carcinomas of skin responding to radiotherapy. During 1971-1972, I collaborated with Andrew Wyllie and Alastair Currie while on sabbatical leave in Scotland. The newly defined type of cell death was shown to be regulated by hormones in the adrenal cortex and in breast carcinomas. Further, review of published electron micrographs of the cell death known to play an essential role in normal development revealed the same morphological pattern. We proposed that this distinctive phenomenon subserves a general homoeostatic function and suggested it be called apoptosis. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.
Resumo:
A dictum long-held has stated that the adult mammalian brain and spinal cord are not capable of regeneration after injury. Recent discoveries have, however, challenged this dogma. In particular, a more complete understanding of developmental neurobiology has provided an insight into possible ways in which neuronal regeneration in the central nervous system may be encouraged. Knowledge of the role of neurotrophic factors has provided one set of strategies which may be useful in enhancing CNS regeneration. These factors can now even be delivered to injury sites by transplantation of genetically modified cells. Another strategy showing great promise is the discovery and isolation of neural stem cells from adult CNS tissue. It may become possible to grow such cells in the laboratory and use these to replace injured or dead neurons. The biological and cellular basis of neural injury is of special importance to neurosurgery, particularly as therapeutic options to treat a variety of CNS diseases becomes greater. (C) 2002 Published by Elsevier Science Ltd.