839 resultados para Cortical Fibroblasts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsupervised categorization of sensory stimuli is typically attributed to feedforward processing in a hierarchy of cortical areas. This purely sensory-driven view of cortical processing, however, ignores any internal modulation, e.g., by top-down attentional signals or neuromodulator release. To isolate the role of internal signaling on category formation, we consider an unbroken continuum of stimuli without intrinsic category boundaries. We show that a competitive network, shaped by recurrent inhibition and endowed with Hebbian and homeostatic synaptic plasticity, can enforce stimulus categorization. The degree of competition is internally controlled by the neuronal gain and the strength of inhibition. Strong competition leads to the formation of many attracting network states, each being evoked by a distinct subset of stimuli and representing a category. Weak competition allows more neurons to be co-active, resulting in fewer but larger categories. We conclude that the granularity of cortical category formation, i.e., the number and size of emerging categories, is not simply determined by the richness of the stimulus environment, but rather by some global internal signal modulating the network dynamics. The model also explains the salient non-additivity of visual object representation observed in the monkey inferotemporal (IT) cortex. Furthermore, it offers an explanation of a previously observed, demand-dependent modulation of IT activity on a stimulus categorization task and of categorization-related cognitive deficits in schizophrenic patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: The aim of this prospective study was to analyse small band-like cortical infarcts after subarachnoid haemorrhage (SAH) using magnetic resonance imaging (MRI) with reference to additional digital subtraction angiography (DSA). METHODS: In a 5-year period between January 2002 and January 2007 10 out of 188 patients with aneurysmal SAH were evaluated (one patient Hunt and Hess grade I, one patient grade II, four patients grade III, two patients grade IV, and two patients grade V). The imaging protocol included serially performed MRI with diffusion- and perfusion-weighted images (DWI/PWI) at three time points after aneurysm treatment, and cerebral vasospasm (CVS) was analysed on follow-up DSA on day 7+/-3 after SAH. RESULTS: The lesions were located in the frontal lobe (n=10), in the insular cortex (n=3) and in the parietal lobe (n=1). The band-like infarcts occurred after a mean time interval of 5.8 days (range 3-10 days) and showed unexceptional adjacent thick sulcal clots. Seven out of ten patients with cortical infarcts had no or mild CVS, and in the remaining three patients DSA disclosed moderate (n=2) or severe (n=1) CVS. CONCLUSION: The infarct pattern after aneurysmal SAH includes cortical band-like lesions. In contrast to territorial infarcts or lacunar infarcts in the white matter which develop as a result of moderate or severe proximal and/or distal vasospasm visible on angiography, the cortical band-like lesions adjacent to sulcal clots may also develop without evidence of macroscopic vasospasm, implying a vasospastic reaction of the most distal superficial and intraparenchymal vessels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smoking is known to be linked to skin ageing and there is evidence for premature senescence of parenchymal lung fibroblasts in emphysema. To reveal whether the emphysema-related changes in cellular phenotype extend beyond the lung, we compared the proliferation characteristics of lung and skin fibroblasts between patients with and without emphysema. Parenchymal lung fibroblasts and skin fibroblasts from the upper torso (thus limiting sun exposure bias) were obtained from patients without, or with mild, or with moderate to severe emphysema undergoing lung surgery. We analysed proliferation rate, population doublings (PD), staining for senescence-associated beta-galactosidase (beta-gal) and gene expression of IGFBP-3 and IGFBP-rP1. Population doubling time of lung fibroblasts differed between control, mild, and moderate to severe emphysema (median (IQR) 29.7(10.0), 33.4(6.1), 44.4(21.2) h; p=0.012) and staining for beta-gal was elevated in moderate to severe emphysema. Compared to control subjects, skin fibroblasts from patients with emphysema did not differ with respect to proliferation rate, PD and beta-gal staining, and showed a lower abundance of mRNA for IGFBP-3 and -rP1 (p<0.05, each). These results suggest that the induction of a senescent fibroblast phenotype by cigarette smoke, as observed in emphysema, primarily occurs in the lung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Nonconvulsive status epilepticus (NCSE) is associated with a mortality rate of up to 18%, therefore requiring prompt diagnosis and treatment. Our aim was to evaluate the diagnostic value of perfusion CT (PCT) in the differential diagnosis of NCSE versus postictal states in patients presenting with persistent altered mental states after a preceding epileptic seizure. We hypothesized that regional cortical hyperperfusion can be measured by PCT in patients with NCSE, whereas it is not present in postictal states. MATERIALS AND METHODS: Nineteen patients with persistent altered mental status after a preceding epileptic seizure underwent PCT and electroencephalography (EEG). Patients were stratified as presenting with NCSE (n = 9) or a postictal state (n = 10) on the basis of clinical history and EEG data. Quantitative and visual analysis of the perfusion maps was performed. RESULTS: Patients during NCSE had significantly increased regional cerebral blood flow (P > .0001), increased regional cerebral blood volume (P > .001), and decreased (P > .001) mean transit time compared with the postictal state. Regional cortical hyperperfusion was depicted in 7/9 of patients with NCSE by ad hoc analysis of parametric perfusion maps during emergency conditions but was not a feature of postictal states. The areas of hyperperfusion were concordant with transient clinical symptoms and EEG topography in all cases. CONCLUSIONS: Visual analysis of perfusion maps detected regional hyperperfusion in NCSE with a sensitivity of 78%. The broad availability and short processing time of PCT in an emergency situation is a benefit compared with EEG. Consequently, the use of PCT in epilepsy may accelerate the diagnosis of NCSE. PCT may qualify as a complementary diagnostic tool to EEG in patients with persistent altered mental state after a preceding seizure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoids (GC) represent the most commonly used drugs for the treatment of acute and chronic inflammatory skin diseases. However, the topical long-term therapy of GC is limited by the occurrence of skin atrophy. Most interestingly, although GC inhibit proliferation of human fibroblasts, they exert a pronounced anti-apoptopic action. In the present study, we further elucidated the molecular mechanism of the GC dexamethasone (Dex) to protect human fibroblasts from programmed cell death. Dex not only significantly alters the expression of the cytosolic isoenzyme sphingosine kinase 1 but also initiated an enhanced intracellular formation of the sphingolipid sphingosine 1-phosphate (S1P). Investigations using S1P (3) ((-/-)) -fibroblasts revealed that this S1P-receptor subtype is essential for the Dex-induced cytoprotection. Moreover, we demonstrate that the ATP-binding cassette (ABC)-transporter ABCC1 is upregulated by Dex and may represent a crucial carrier to transport S1P from the cytosol to the S1P(3)-receptor subtype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cathepsins are required for the processing of antigens in order to make them suitable for loading on major histocompatibility complex (MHC) class II molecules, for subsequent presentation to CD4(+) T cells. It was shown that antigen processing in monocyte-derived dendritic cells (DC), a commonly used DC model, is different from that of primary human DC. Here, we report that the two subsets of human myeloid DC (mDC) and plasmacytoid DC (pDC) differ in their cathepsin distribution. The serine protease cathepsin G (CatG) was detected in mDC1, mDC2, pDC, cortical thymic epithelial cells (cTEC) and high levels of CatG were determined in pDC. To address the role of CatG in the processing and presentation of a Multiple Sclerosis-associated autoantigen myelin basic protein (MBP), we used a non-CatG expressing fibroblast cell line and fibroblasts, which were preloaded with purified CatG. We find that preloading fibroblasts with CatG results in a decrease of MBP84-98-specific T cell proliferation, when compared to control cells. Our data suggest a different processing signature in primary human antigen-presenting cells and CatG may be of functional importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annexins are a family of Ca(2+)- and phospholipid-binding proteins, which interact with membranes upon increase of [Ca(2+)](i) or during cytoplasmic acidification. The transient nature of the membrane binding of annexins complicates the study of their influence on intracellular processes. To address the function of annexins at the plasma membrane (PM), we fused fluorescent protein-tagged annexins A6, A1, and A2 with H- and K-Ras membrane anchors. Stable PM localization of membrane-anchored annexin A6 significantly decreased the store-operated Ca(2+) entry (SOCE), but did not influence the rates of Ca(2+) extrusion. This attenuation was specific for annexin A6 because PM-anchored annexins A1 and A2 did not alter SOCE. Membrane association of annexin A6 was necessary for a measurable decrease of SOCE, because cytoplasmic annexin A6 had no effect on Ca(2+) entry as long as [Ca(2+)](i) was below the threshold of annexin A6-membrane translocation. However, when [Ca(2+)](i) reached the levels necessary for the Ca(2+)-dependent PM association of ectopically expressed wild-type annexin A6, SOCE was also inhibited. Conversely, knockdown of the endogenous annexin A6 in HEK293 cells resulted in an elevated Ca(2+) entry. Constitutive PM localization of annexin A6 caused a rearrangement and accumulation of F-actin at the PM, indicating a stabilized cortical cytoskeleton. Consistent with these findings, disruption of the actin cytoskeleton using latrunculin A abolished the inhibitory effect of PM-anchored annexin A6 on SOCE. In agreement with the inhibitory effect of annexin A6 on SOCE, constitutive PM localization of annexin A6 inhibited cell proliferation. Taken together, our results implicate annexin A6 in the actin-dependent regulation of Ca(2+) entry, with consequences for the rates of cell proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endometrium contains a distinct population of immune cells that undergo cyclic changes during the menstrual cycle and implantation. The majority of these leucocytes are uterine NK (uNK) cells, however how these cells interact with uterine stromal fibroblasts remains unclear. We therefore investigated the paracrine effect of medium conditioned by uterine decidual leucocytes (which are enriched for uNK cells) on the gene expression profile of endometrial stromal fibroblasts in vitro using a cDNA microarray. Our results, verified by real-time PCR, ELISA and FACS analysis, reveal that soluble factors from uterine leucocytes substantially alter endometrial stromal fibroblast gene expression. The largest group of up-regulated genes found was chemokines and cytokines. These include IL-8, CCL8 and CXCL1, which have also been shown to be stimulated by contact of stromal fibroblasts with trophoblast, suggesting that uNK cells work synergistically to support trophoblast migration during implantation. The decidual leucocytes also up-regulated IL-15 and IL-15Ralpha in stromal fibroblasts which could produce a niche for uNK cells allowing proliferation within and recruitment into the uterus, as seen in bone marrow. Overall this study demonstrates, for the first time, the paracrine communication between uterine leucocytes and uterine stromal fibroblasts, and adds to the understanding of how the uterine immune system contributes to the changes seen within the cycling endometrium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical forces are essential for connective tissue homeostasis. The extracellular matrix (ECM) plays a key role in the transmission of forces generated by the organism (e.g. muscle contraction) and externally applied (e.g. gravity). The expression of specific ECM proteins such as collagens and tenascin-C, as well as of matrix metalloproteinases, involved in their turnover, is influenced by mechanical stimuli. The precise mechanisms by which mechanical strains are translated into chemical signals and lead to differential gene expression are however not fully understood. Cell-matrix adhesion sites are good candidates for hosting a "mechanosensory switch", as they transmit forces from the ECM to the cytoskeleton and vice versa by physically linking the cytoskeleton to the ECM. Integrins, transmembrane proteins located to these adhesion sites, have been shown to trigger a set of internal signaling cascades after mechanical stimulation. We have shown that the expression level of tenascin-C directly correlates with externally applied mechanical stress, as well as with RhoA/RhoA-dependent kinase-mediated cytoskeletal tension. Presumably other genes are regulated in a similar manner. The changes in ECM composition and mechanical properties derived from mechanical stress are relevant in medical intervention after ligament and tendon injury.