926 resultados para Corrosion protection
Resumo:
Four research methods, such as weight loss test, electrochemical techniques, adsorption isotherm, and quantum chemical calculation, were employed in this paper to study the inhibition efficiency (IE) and inhibition mechanism of three 2H-pyrazole-triazole derivatives, BHOT, FHOT, and CHOT in 1 M HCl solution for mild steel. Using the electrochemical technique, three inhibitors were proved to show a mixed-type character for mild steel by suppressing both anodic and cathodic reactions on the steel surface. The adsorption models of three compounds were established at different temperatures according to their adsorption isotherms. The results of the quantum chemical calculation method indicated that the adsorption sites of 2H-pyrazole-triazole derivatives were strongly centralized on benzene ring, triazole ring, or other substituents. All the results showed that the three derivatives were excellent inhibitors in I M HCl solution for mild steel.
Resumo:
The inhibitory effect of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and 2,4,6-tri(2-pyridyl)-s-triazine (TPT) molecules on the corrosion of mild steel in 1 mol/L HCl and microcosmic inhibitory mechanism were investigated by X-ray photoelectron spectroscopy and ellipsometry. XPS results showed that C Is and N Is peaks of TTC, C Is and N Is peaks of TPT and their integral areas were obtained, which suggested the layer of the inhibitors (TTC or TPT) should have effectively protected the mild steel surface from the corrosion; and the depression from the inhibitors for the corrosion of mild steel surface was studied using ellipsometry combined with potentiodynamic polarization and the phasic difference was gained, which displayed the inhibitory coverage of the inhibitors formed.
Resumo:
The oxo-triazole derivative (DTP) was synthesized and its inhibiting action on the corrosion of mild steel in sulphuric acid was investigated by means of weight loss, potentiodynamic polarization, EIS and SEM. The results revealed that DTP was an excellent inhibitor and the inhibition efficiencies obtained from weight loss experiment and electrochemical experiment were in good agreement. Potentiodynamic polarization studies clearly revealed that DTP acted essentially as the mixed-type inhibitor. Thermodynamic and kinetic parameters were obtained from weight loss of the different experimental temperatures, which suggested that at different temperatures (298-333 K) the adsorption of DTP on metal surface obeyed Langmuir adsorption isotherm model. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Corrosion inhibition by some new triazole derivatives on mild steel in 1 M hydrochloric acid solutions has been investigated by weight loss test, electrochemical measurement, scanning electronic microscope analysis and quantum chemical calculations. The results indicate that these compounds act as mixed-type inhibitors retarding the anodic and cathodic corrosion reactions and do not change the mechanism of either hydrogen evolution reaction or mild steel dissolution. The studied compounds following the Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The effect of molecular structure on the inhibition efficiency has been investigated by ab initio quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, energy gap (LUMO-HOMO), dipole moment and molecular orbital densities were calculated. (C) 2009 Published by Elsevier B.V.
Resumo:
Susceptibility to stress corrosion cracking of X56 steel and its relationship with hydrogen permeation behaviour in atmospheric environment containing H2S was investigated by hydrogen permeation tests at a slow strain rate. The results show that: the fracture strain decreases with the decrease of strain rate under the same experimental conditions; the fracture strain also decreases with the increase of H2S concentration under the same strain rate, and the increased concentration of H2S has no significant effect on the hydrogen permeation in the first wet, etc. dry cycle, however has lead to increased hydrogen permeation in the later cycles. The SEM images of the fractured surfaces show clear evidences of enhanced stress corrosion cracking susceptibility by H2S.
Resumo:
Along with the development of marine industries, especially marine petroleum exploitation, more and more pipelines are buried in the marine sediment. It is necessary and useful to know the corrosion environment and corrosiveness of marine sediment. In this paper, field corrosion environmental factors were investigated in Liaodong Bay marine sediment containing sulfate-reducing bacteria (SRB) and corrosion rate of steel in the partly sediment specimens were determined by the transplanting burying method. Based on the data, the fuzzy clustering analysis (FCA) was applied to evaluate and predict the corrosiveness of marine sediment. On that basis, the influence factors of corrosion damage were discussed.
Resumo:
Hydrogen entry and permeation into iron were measured by an electrochemical method during atmospheric corrosion reaction. The hydrogen permeation was enhanced on passive films because the hydrogen adsorption increased by the hydrogen evolution mechanism which is different from that on a bear iron surface. The permeation rate during a wet and dry corrosion cycle showed a maximum in the drying process depending upon the surface pH and the corrosion potential. The pollutant such as Na2SO3 which decreases the pH and the corrosion potential causes an increase in the permeation rate. The mechanism of the change in the permeation rate during the wet and dry cycles is explained by the polarization diagram of the electrode covered by thin water layer. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Seabed sediment (SBS) is a special soil that is covered by seawater. With the developments in marine oil exploitation and engineering, more and more steel structures have been buried in SBS. SBS corrosion has now become a serious problem in marine environment and an important issue in corrosion science. In this paper, approach in the field of SBS corrosion is reviewed. Electrochemical and microbial corrosion factors, corrosion mechanism, measurement of metal corrosion rate, corrosion evaluation and prediction of corrosion are also discussed here.
Resumo:
The inhibition effect of metal-free phthalocyanine (H2Pc), copper phthalocyanine (CuPc) and copper phthalocyanine tetrasulfuric tetrasodium salt (CuPc center dot S(4)center dot Na-4) on mild steel in I mol/l HCl in the concentration range of 1.0 X 10(-5) to 1.0 X 10(-3) mol/l was investigated by electrochemical test, scanning electron microscope with energy dispersive spectrometer (SEM/EDS) and quantum chemical method. The potentiodynamic polarization curves of mild steel in hydrochloric acid containing these compounds showed both cathodic and anodic processes of steel corrosion were suppressed, and the Nyquist plots of impedance expressed mainly as a capacitive loop with different compounds and concentrations. For all these phthalocyanines, the inhibition efficiency increased with the increase in inhibitor concentration, while the inhibition efficiencies for these three phthalocyanines with the same concentration decreased in the order Of CuPc center dot S(4)center dot Na-4 > CuPc > H2Pc according to the electrochemical measurement results. The SEM/EDS analysis indicated that there are more lightly corroded and oxidative steel surface for the specimens after immersion in acid solution containing 1.0 x 10(-3) mol/l phthalocyanines than that in blank. The quantum chemical calculation results showed that the inhibition efficiency of these phthalocyanines increased with decrease in molecule's LUMO energy, which was different from the micro-cyclic compounds. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The corrosion failure behavior of marine steel is affected by stress, which exists in offshore structures at sea-mud region. The sulfate reducing bacteria (SRB) in the sea-mud made the steel more sensitive to stress corrosion cracking (SCC) and weaken the corrosion fatigue endurance. In this paper, a kind of natural sea-mud containing SRB was collected. Both SCC tests by slow strain rate technique and corrosion fatigue tests were performed on a kind of selected steel in sea-mud with and without SRB at corrosion and cathodic potentials. After this, the electrochemical response of static and cyclic stress of the specimen with and without cracks in sea-mud was analyzed in order to explain the failure mechanism. Hydrogen permeation tests were also performed in the sea-mud at corrosion and cathodic potentials. It is concluded that the effect of SRB on environment sensitive fracture maybe explained as the consequences of the acceleration of SRB on corrosion rate and hydrogen entry into the metal.
Resumo:
The changes of corrosion potential (E-corr) of metals immersed in seawater were investigated with electrochemical technology and epifluoresence microscopy. In natural seawater, changes of E-corr were determined by the surface corrosion state of the metal. E-corr of passive metals exposed to natural seawater shifted to noble direction for about 150 mV in one day and it didn't change in sterile seawater. The in-situ observation showed that biofilms settled on the surfaces of passive metals when E-corr moved in noble direction. The bacteria number increased on the metal surface according to exponential law and it was in the same way with the ennoblement of E-corr. The attachment of bacteria during the initial period played an important role in the ennoblement of E-corr and it is believed that the carbohydrate and protein in the biofilm are reasons for this phenomenon. The double layer capacitance (C-dl) of passive metals decreased with time when immersed in natural seawater, while remained almost unchanged in sterile seawater. The increased thickness and reduced dielectric constant of C-dl may be reasons.
Resumo:
Three kinds of steels were studied using electrically connected hanging specimen in the corrosion simulation device and offshore long scale hanging specimen. The experimental results obtained by the two methods show that the device can better reflect the offshore corrosion environment. A Ni-Cu-P steel specimen was studied through analysis of the specimen's corrosion products and corrosion types. The surface of the samples before and after the removal of the rust layer produced by these two methods were observed and compared after some experiments. The microstructure of the corrosion products under different marine environments were analyzed and compared through IR. It indicated good correlation between the electrically connected hanging specimen method and the long scale hanging specimen method.
Resumo:
A corrosion simulation device was studied using offshore long scale hanging specimens. An Ni-Cu-P steel specimen was studied by analysing its corrosion products and corrosion types. The appearance of the samples and the surface of the metallic substrate after the removal of the rust layer produced by these two methods were observed and compared after 470 days of exposure. The phase structure of the corrosion products under different marine environments were analysed and compared. It further indicated good correlation between the electrically connected hanging specimen method and the long scale hanging specimen method.
Resumo:
In order to investigate the corrosion of pipeline materials in Seabed Sediment (SBS) environment, weight-loss and electrochemical measurements in saturated sand and mud cells with seawater were performed for a simulation. The used electrochemical measurements included linear polarization resistance (LPR) and potentiodynamic scanning measurement. It was showed that the corrosion rate of mild steel in the present condition was lower than the corrosion rate of other marine environment corrosion zones of it; that the granularity of SBS could affect the corrosion behavior greatly; that with increasing grain size of SBS, the corrosion rate increased. Integrated over the results of the weight loss and polarization curves, the oxygen diffusion (oxygen as a depolarizant agent) mechanism was proposed and discussed.
Resumo:
The stress corrosion cracking (SCC) of LambdaISI 321 stainless steel in acidic chloride solution was studied by slow strain rate (SSR) technique and fracture mechanics method. The fractured surface was characterized by cleavage fracture. In order to clarify the SCC mechanism, the effects of inhibitor KI on SCC behaviour were also included in this paper. A study showed that the inhibition effects of KI on SCC were mainly attributed to the anodic reaction of the corrosion process. The results of strain distribution in front of the crack tip of the fatigue pre-cracked plate specimens in air, in the blank solution (acidic chloride solution without inhibitor KI) and in the solution added with KI measured by speckle interferometry (SPI) support the unified mechanism of SCC and corrosion fatigue cracking (CFC).