891 resultados para Correction de textures
Resumo:
Purpose: To compare the manifest refractive cylinder (MRC) predictability of myopic astigmatism laser in situ keratomileusis (LASIK) between eyes with low and high ocular residual astigmatism (ORA). Setting: London Vision Clinic, London, United Kingdom. Design: Retrospective case study. Methods: The ORA was considered the vector difference between the MRC and the corneal astigmatism. The index of success (IoS), difference vector ÷ MRC, was analyzed for different groups as follows: stage 1, low ORA (ORA ÷ MRC <1), high ORA (ORA ÷ MRC ≥1); stage 2, low ORA group reduced to match the high ORA group for MRC; stage 3, grouped by ORA magnitude with low ORA (<0.50 diopters [D]), mid ORA (0.50 to 1.24 D), and high ORA (≥1.25 D); stage 4, high ORA group subdivided into low (<0.75 D) and high (≥0.75 D) corneal astigmatism. Results: For stage 1, the mean preoperative MRC and mean IoS were −1.32 D ± 0.65 (SD) (range −0.55 to −3.77 D) and 0.27, respectively, for low ORA and −0.79 ± 0.20 D (range −0.56 to −2.05 D) and 0.37, respectively, for high ORA. For stage 2, the mean IoS increased to 0.32 for low ORA. For stage 3, the mean IoS was 0.28, 0.29, and 0.31 for low ORA, mid ORA, and high ORA, respectively. For stage 4, the mean IoS was 0.20 for high ORA/low corneal astigmatism and 0.35 for high ORA/high corneal astigmatism. Conclusions: The MRC predictability was slightly worse in eyes with high ORA when grouped by the ORA ÷ MRC. Matching for the MRC and grouping by ORA magnitude resulted in similar predictability; however, eyes with high ORA and high corneal astigmatism were less predictable.
Resumo:
We study the quantum spin waves associated to skyrmion textures. We show that the zero-point energy associated to the quantum spin fluctuations of a noncollinear spin texture produce Casimir-like magnetic fields. We study the effect of these Casimir fields on the topologically protected noncollinear spin textures known as skyrmions. In a Heisenberg model with Dzyalonshinkii-Moriya interactions, chosen so the classical ground state displays skyrmion textures, we calculate the spin-wave spectrum, using the Holstein-Primakoff approximation, and the associated zero-point energy, to the lowest order in the spin-wave expansion. Our calculations are done both for the single-skyrmion case, for which we obtain a discrete set of skyrmion bound states, as well as for the skyrmion crystal, for which the resulting spectrum gives the spin-wave bands. In both cases, our calculations show that the Casimir magnetic field contributes up to 10% of the total Zeeman energy necessary to delete the skyrmion texture with an applied field.
Resumo:
A new Stata command called -mgof- is introduced. The command is used to compute distributional tests for discrete (categorical, multinomial) variables. Apart from classic large sample $\chi^2$-approximation tests based on Pearson's $X^2$, the likelihood ratio, or any other statistic from the power-divergence family (Cressie and Read 1984), large sample tests for complex survey designs and exact tests for small samples are supported. The complex survey correction is based on the approach by Rao and Scott (1981) and parallels the survey design correction used for independence tests in -svy:tabulate-. The exact tests are computed using Monte Carlo methods or exhaustive enumeration. An exact Kolmogorov-Smirnov test for discrete data is also provided.
Resumo:
BACKGROUND AND PURPOSE In clinical diagnosis, medical image segmentation plays a key role in the analysis of pathological regions. Despite advances in automatic and semi-automatic segmentation techniques, time-effective correction tools are commonly needed to improve segmentation results. Therefore, these tools must provide faster corrections with a lower number of interactions, and a user-independent solution to reduce the time frame between image acquisition and diagnosis. METHODS We present a new interactive method for correcting image segmentations. Our method provides 3D shape corrections through 2D interactions. This approach enables an intuitive and natural corrections of 3D segmentation results. The developed method has been implemented into a software tool and has been evaluated for the task of lumbar muscle and knee joint segmentations from MR images. RESULTS Experimental results show that full segmentation corrections could be performed within an average correction time of 5.5±3.3 minutes and an average of 56.5±33.1 user interactions, while maintaining the quality of the final segmentation result within an average Dice coefficient of 0.92±0.02 for both anatomies. In addition, for users with different levels of expertise, our method yields a correction time and number of interaction decrease from 38±19.2 minutes to 6.4±4.3 minutes, and 339±157.1 to 67.7±39.6 interactions, respectively.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Imprint varies.
Resumo:
Report for 1930 has title: Summary and comment of the Commissioner of Correction on crime statistics ..