912 resultados para Copying machines
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We propose techniques of optical frequency conversion, pulse compression and signal copying based on a combination of cross-phase modulation using triangular pump pulses and subsequent propagation in a dispersive medium.
Resumo:
The problem of computing the storage capacity of a feed-forward network, with L hidden layers, N inputs, and K units in the first hidden layer, is analyzed using techniques from statistical mechanics. We found that the storage capacity strongly depends on the network architecture αc ∼ (log K)1-1/2L and that the number of units K limits the number of possible hidden layers L through the relationship 2L - 1 < 2log K. © 2014 IOP Publishing Ltd.
Resumo:
In recent years, learning word vector representations has attracted much interest in Natural Language Processing. Word representations or embeddings learned using unsupervised methods help addressing the problem of traditional bag-of-word approaches which fail to capture contextual semantics. In this paper we go beyond the vector representations at the word level and propose a novel framework that learns higher-level feature representations of n-grams, phrases and sentences using a deep neural network built from stacked Convolutional Restricted Boltzmann Machines (CRBMs). These representations have been shown to map syntactically and semantically related n-grams to closeby locations in the hidden feature space. We have experimented to additionally incorporate these higher-level features into supervised classifier training for two sentiment analysis tasks: subjectivity classification and sentiment classification. Our results have demonstrated the success of our proposed framework with 4% improvement in accuracy observed for subjectivity classification and improved the results achieved for sentiment classification over models trained without our higher level features.
Resumo:
In high precision industry, the measurement of geometry is often performed using coordinate measuring machines (CMMs). Measurements on CMMs can occur at many places within a long and global supply chain. In this context it is a challenge to control consistency, so that measurements are applied with appropriate levels of rigour and achieve comparable results, wherever and whenever they are performed. In this paper, a framework is outlined in which consistency is controlled through measurement strategy, such as the number and location of measurement points. The framework is put to action in a case study, demonstrating the usefulness of the approach and highlighting the dangers of imposing rigid measurement strategies across the supply chain, even if linked to standardised manufacturing processes. Potential mitigations, and the requirements for future research, are outlined.
Resumo:
Measuring and compensating the pivot points of five-axis machine tools is always challenging and very time consuming. This paper presents a newly developed approach for automatic measurement and compensation of pivot point positional errors on five-axis machine tools. Machine rotary axis errors are measured using a circular test. This method has been tested on five-axis machine tools with swivel table configuration. Results show that up to 99% of the positional errors of the rotary axis can be compensated by using this approach.
Resumo:
This paper draws upon part of the findings of an ethnographic study in which two seventeen year old girls were employed to interview their peer about engineering as a study and career choice. It argues that whilst girls do view engineering as being generally masculine in nature, other factors such as a lack of female role models and an emphasis on physics and maths act as barriers to young women entering the discipline. The paper concludes by noting that engineering has much to offer young women, the problem is, they simply don't know this is the case! Copyright © 2013 Jane Andrews & Robin Clark.
Resumo:
In our study we rely on a data mining procedure known as support vector machine (SVM) on the database of the first Hungarian bankruptcy model. The models constructed are then contrasted with the results of earlier bankruptcy models with the use of classification accuracy and the area under the ROC curve. In using the SVM technique, in addition to conventional kernel functions, we also examine the possibilities of applying the ANOVA kernel function and take a detailed look at data preparation tasks recommended in using the SVM method (handling of outliers). The results of the models assembled suggest that a significant improvement of classification accuracy can be achieved on the database of the first Hungarian bankruptcy model when using the SVM method as opposed to neural networks.
Resumo:
This research is motivated by a practical application observed at a printed circuit board (PCB) manufacturing facility. After assembly, the PCBs (or jobs) are tested in environmental stress screening (ESS) chambers (or batch processing machines) to detect early failures. Several PCBs can be simultaneously tested as long as the total size of all the PCBs in the batch does not violate the chamber capacity. PCBs from different production lines arrive dynamically to a queue in front of a set of identical ESS chambers, where they are grouped into batches for testing. Each line delivers PCBs that vary in size and require different testing (or processing) times. Once a batch is formed, its processing time is the longest processing time among the PCBs in the batch, and its ready time is given by the PCB arriving last to the batch. ESS chambers are expensive and a bottleneck. Consequently, its makespan has to be minimized. ^ A mixed-integer formulation is proposed for the problem under study and compared to a formulation recently published. The proposed formulation is better in terms of the number of decision variables, linear constraints and run time. A procedure to compute the lower bound is proposed. For sparse problems (i.e. when job ready times are dispersed widely), the lower bounds are close to optimum. ^ The problem under study is NP-hard. Consequently, five heuristics, two metaheuristics (i.e. simulated annealing (SA) and greedy randomized adaptive search procedure (GRASP)), and a decomposition approach (i.e. column generation) are proposed—especially to solve problem instances which require prohibitively long run times when a commercial solver is used. Extensive experimental study was conducted to evaluate the different solution approaches based on the solution quality and run time. ^ The decomposition approach improved the lower bounds (or linear relaxation solution) of the mixed-integer formulation. At least one of the proposed heuristic outperforms the Modified Delay heuristic from the literature. For sparse problems, almost all the heuristics report a solution close to optimum. GRASP outperforms SA at a higher computational cost. The proposed approaches are viable to implement as the run time is very short. ^
Resumo:
With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^
Resumo:
This research aims at a study of the hybrid flow shop problem which has parallel batch-processing machines in one stage and discrete-processing machines in other stages to process jobs of arbitrary sizes. The objective is to minimize the makespan for a set of jobs. The problem is denoted as: FF: batch1,sj:Cmax. The problem is formulated as a mixed-integer linear program. The commercial solver, AMPL/CPLEX, is used to solve problem instances to their optimality. Experimental results show that AMPL/CPLEX requires considerable time to find the optimal solution for even a small size problem, i.e., a 6-job instance requires 2 hours in average. A bottleneck-first-decomposition heuristic (BFD) is proposed in this study to overcome the computational (time) problem encountered while using the commercial solver. The proposed BFD heuristic is inspired by the shifting bottleneck heuristic. It decomposes the entire problem into three sub-problems, and schedules the sub-problems one by one. The proposed BFD heuristic consists of four major steps: formulating sub-problems, prioritizing sub-problems, solving sub-problems and re-scheduling. For solving the sub-problems, two heuristic algorithms are proposed; one for scheduling a hybrid flow shop with discrete processing machines, and the other for scheduling parallel batching machines (single stage). Both consider job arrival and delivery times. An experiment design is conducted to evaluate the effectiveness of the proposed BFD, which is further evaluated against a set of common heuristics including a randomized greedy heuristic and five dispatching rules. The results show that the proposed BFD heuristic outperforms all these algorithms. To evaluate the quality of the heuristic solution, a procedure is developed to calculate a lower bound of makespan for the problem under study. The lower bound obtained is tighter than other bounds developed for related problems in literature. A meta-search approach based on the Genetic Algorithm concept is developed to evaluate the significance of further improving the solution obtained from the proposed BFD heuristic. The experiment indicates that it reduces the makespan by 1.93 % in average within a negligible time when problem size is less than 50 jobs.