924 resultados para Copper mines and mining
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Vols. -1952 issued as a supplement to division's Mineral information service; as division's Special publication.
Resumo:
Mode of access: Internet.
Resumo:
Atmospheric corrosion tests, according to ASTM G50, have been carried out in Queensland, Australia, at three different sites representing three different environmental conditions. A range of materials including primary copper (electrosheet) and electrolytic tough pitch (traditional cold rolled) copper have been exposed. Data is available for five exposure periods over a three year time span. X-Ray Diffraction has been used to determine the composition of the corrosion products. Corrosion rates have been determined for each material at each of the exposure sites and are compared with corrosion rates obtained from other long term atmospheric corrosion test programs. Primary copper sheet (electrosheet) behaves like traditionally produced cold rolled copper (C11000) sheet but with an increased corrosion rate. This difference between the rolled copper samples and the primary copper samples is probably due to a combination of factors related to the difference in crystallographic texture of the underlying copper, the morphology and texture of the cuprite layer, the surface roughness of the sheets, and the differences in mass. These factors combine together to provide an increased oxidation rate and TOW for the electrosheet material and which is significantly higher at the more tropical sites. For a sulfate environment (Urban) the initial corrosion product is cuprite with posnjakite and brochantite also occurring at longer exposures. Posnjakite is either washed away or converted to brochantite during further exposure. The amount of brochantite increases with exposure time and forms the blue-green patina layer. For a chloride environment (Marine) the initial corrosion product is cuprite with atacamite also occurring at longer exposures.
Resumo:
The Jameson Cell is a high intensity flotation device, which utilises induced air from the atmosphere. It was developed jointly by Mount Isa Mines and Professor Graeme Jameson of the University of Newcastle in the 1980s. It is proven to generate fine bubbles, in the order of 300 to 500 µm, in a high intensity, high shear and compact zone contained in the downcomer. This aerated mixture exits the downcomer into the pulp zone, which is the quiescent mineral and gangue separation zone. A number of Australian base metal flotation circuits feature a reverse flotation stage at the head of the circuit. Testwork and plant operating data has shown that the use of a Jameson Cell in the prefloat cleaner application has further improved prefloat gangue recovery and selectivity. Operation of a Jameson Cell in a carbonaceous/pyrite prefloat cleaner duty at the Mt Isa copper concentrator increased copper recovery and reduced pyrite in the copper concentrate. Testwork at Zinifex Century Zinc Mine showed a decrease in zinc losses by the utilisation of Jameson Cell prefloat cleaner. Appraisal of a Jameson Cell in a scalping role within the Mt Isa Copper Concentrator indicated significant benefits could be achieved.
Resumo:
Copper(II) complexes of some pyridine-2-carboxamidrazones have been prepared and characterized. The crystal structures of the copper complex cis-[dichloro(N1-2-acetylthiophene-pyridine-2-carboxamidrazone) copper(II)] 8a and one of the free ligands, viz. {(p-chloro-2-thioloxy-benzylidine-pyridine-2-carboxamidrazone)} 6, have been determined. The former shows a highly distorted square planar geometry around copper, with weak intermolecular coordination from the thiophenyl sulfur resulting in a stacking arrangement in the crystal lattice. The in vitro activities of the synthesized compounds against the malarial parasite Plasmodium falciparum are reported for the first time, which clearly shows the advantage of copper complexation and the requirement of four coordinate geometry around copper as some of the key structural features for designing such metal-based antimalarials. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Deformation microstructures in two batches of commercially pure copper (A and B) of allnost similar composition have been studied after rolling reductions from 5% to 95%. X- ray diffraction, optical metallography, scanning electron microscopy in the back-scattered mode, transmission and scanning electron microscopy have been used to examine the deformation microstructure. At low strains (~10 %) the deformation is accommodated by uniform octahedral slip. Microbands that occur as sheet like features usually on the {111} slip planes are formed after 10% reduction. The misorientations between rnicrobonds ond the matrix are usually small (1 - 2° ) and the dislocations within the bands suggest that a single slip system has been operative. The number of microbands increases with strain, they start to cluster and rotate after 60% reduction and, after 90 %, they become almost perfectly aligned with the rolling direction. There were no detectable differences in deformation microstructure between the two materials up to a deformation level of 60% but subsequently, copper B started to develop shear bands which became very profuse by 90% reduction. By contrast, copper A at this stage of deformation developed a smooth laminated structure. This difference in the deformation microstructures has been attributed to traces of unknown impurity in D which inhibit recovery of work hardening. The preferred orientations of both were typical of deformed copper although the presence of shear bands was associated wth a slightly weaker texture. The effects of rolling temperature and grain size on deformation microstructure were also investigated. It was concluded that lowering the rolling temperature or increasing the initial grain size encourages the material to develop shear bands after heavy deformation. Recovery and recrystallization have been studied in both materials during annealing. During recrystallization the growth of new grains showed quite different characteristics in the two cases. Where shear bands were present these acted as nucleation sites and produced a wide spread of recrystallized grain orientations. The resulting annealing textures were very weak. In the absence of shear bands, nucleation occurs by a remarkably long range bulging process which creates the cube orientation and an intensely sharp annealing texture. Cube oriented regions occur in long bands of highly elongated and well recovered cells which contain long range cumulative micorientations. They are transition bands with structural characteristics ideally suited for nucleation of recrystallization. Shear banding inhibits the cube texture both by creating alternative nuclei and by destroying the microstructural features necessary for cube nucleation.
Resumo:
Rapid adaptation and tolerance is a phenomenon experienced by a variety of organisms typically because of new and harsh environments. Mimulus guttatus, a plant commonly seen on the west coast of the United States, is a prime example as it has rapidly evolved to soil contamination by copper due to mining in California in the last 150 years. There have been two hypotheses posed by researchers as to the genetic basis of how organisms have evolved so quickly which I set out to study: 1) There is a low frequency of tolerant genotypes in the ancestral population otherwise known as standing variation or 2) new mutations occurred once exposed to a new environment. In the past, researchers found it difficult to distinguish between the two because they lacked the technology we have today for DNA analysis. I used four different populations of M. guttatus from varying locations in order to address which hypothesis was valid. I conducted both survival assays of these populations and DNA analysis of known tolerant and non-tolerant lines using a copper oxidase gene. I found that there was at least some degree of tolerance in all populations in the survival assays, supporting the hypothesis of standing variation. I also found patterns within DNA analysis suggesting the copper oxidase gene would be useful for further study to verify the standing variation hypothesis. The results from this experiment helps in understanding rapid evolution not just in the context of soil contamination by metals but also ties back to why an alarming number of species are not able to adapt to our constantly changing world.
Resumo:
According to Solitander C. P., the extraction of lake ore from Eastern Finland lakes considerably rose in the 1870 - 1880 period in relation with the increasing demand from the ironworks being operated in the region. In St. Petersburg, Nicholas Putiloff, a business tycoon and State Minister owned the Haapakosken, Huutokosken and Oravin ironworks which were using 99% of lake ore for their supply. During this period the biggest production came from lake Sysmäjärvi in the Joroinen county with 3676 tonnes at an average concentration of 35.94% Fe, 4.55% Mn, 0.26% P and 0.04% S. The Värtsilä ironworks used the lake ore coming from 49 lakes, the biggest production coming from lake Loitimojärvi with 14535 tonnes of ore with a medium at concentration of 30.8% Fe. Möhkö ironworks took advantage of the 59 lakes, the largest of which was from lake Koitere with 4301 tonnes at 41.3% Fe. The Karttula ironworks were also significant in the consumption of ferromanganese lake ore.
Resumo:
Copper-manganese spinel containing anodes were synthesized by a facile sol-gel method and evaluated in lithium-ion battery applications for the first time. The synergistic effects between copper-manganese and the aqueous binder (sodium carboxymethyl cellulose) provided a high specific capacity and excellent cycling performance. It was found that the specific capacity of the copper-manganese spinel remained at 608 mAh g−1 after 100 cycles at a current density of 200 mA g−1. Furthermore, a relatively high reversible capacity of 278 mAh g−1 could be obtained at a current density of 2000 mA g−1, indicating a good rate capability. These studies suggest that copper-manganese spinel is a promising material for lithium-ion battery applications due to a combination of good electrochemical performance and low cost.
Resumo:
Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.
Resumo:
Placer miners in Alaska’s interior were part of the last great gold rush in North America. As word of gold in the Fairbanks Mining District traveled down the Yukon River, a wave of miners from the Klondike placer fields in Dawson, along with a assortment of speculators and inexperienced green horns from the Lower 48 converged on the confluence of the Tanana and Chena rivers hoping to strike it rich. The steamers coming from Dawson were integral; they carried miners with experience working the frozen subarctic placer deposits of the Klondike. These miners encountered new environmental challenges that required the development of new technologies and mining methods to efficiently harvest gold. These methods and machines were brought into Fairbanks and further perfected to account for the local conditions. This thesis describes the local mining technologies and methods employed in the Fairbanks district and the landscape patterns created during the placer mining boom years of 1903-1909, decline years of 1910-1923 and recovery of 1923-1930.
Resumo:
Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.