996 resultados para Control de insectos
Resumo:
Recent experimental evidence has shown that learning occurs in the host selection behaviour of Helicoverpa armigera (Hübner), one of the world‘s most important agricultural pests. This paper discusses how the occurrence of learning changes our understanding of the host selection behaviour of this polyphagous moth. Host preferences determined from previous laboratory studies may be vastly different from preferences exhibited by moths in the field, where the abundance of particular hosts may be more likely to determine host preference. In support of this prediction, a number of field studies have shown that the ‘attractiveness’ of different hosts for H. armigera oviposition may depend on the relative abundance of these host species. Insect learning may play a fundamental role in the design and application of present and future integrated pest management strategies such as the use of host volatiles, trap crops and resistant crop varieties for monitoring and controlling this important pest species
Resumo:
The feral pig, Sus scrofa, is a widespread and abundant invasive species in Australia. Feral pigs pose a significant threat to the environment, agricultural industry, and human health, and in far north Queensland they endanger World Heritage values of the Wet Tropics. Historical records document the first introduction of domestic pigs into Australia via European settlers in 1788 and subsequent introductions from Asia from 1827 onwards. Since this time, domestic pigs have been accidentally and deliberately released into the wild and significant feral pig populations have become established, resulting in the declaration of this species as a class 2 pest in Queensland. The overall objective of this study was to assess the population genetic structure of feral pigs in far north Queensland, in particular to enable delineation of demographically independent management units. The identification of ecologically meaningful management units using molecular techniques can assist in targeting feral pig control to bring about effective long-term management. Molecular genetic analysis was undertaken on 434 feral pigs from 35 localities between Tully and Innisfail. Seven polymorphic and unlinked microsatellite loci were screened and fixation indices (FST and analogues) and Bayesian clustering methods were used to identify population structure and management units in the study area. Sequencing of the hyper-variable mitochondrial control region (D-loop) of 35 feral pigs was also examined to identify pig ancestry. Three management units were identified in the study at a scale of 25 to 35 km. Even with the strong pattern of genetic structure identified in the study area, some evidence of long distance dispersal and/or translocation was found as a small number of individuals exhibited ancestry from a management unit outside of which they were sampled. Overall, gene flow in the study area was found to be influenced by environmental features such as topography and land use, but no distinct or obvious natural or anthropogenic geographic barriers were identified. Furthermore, strong evidence was found for non-random mating between pigs of European and Asian breeds indicating that feral pig ancestry influences their population genetic structure. Phylogenetic analysis revealed two distinct mitochondrial DNA clades, representing Asian domestic pig breeds and European breeds. A significant finding was that pigs of Asian origin living in Innisfail and south Tully were not mating randomly with European breed pigs populating the nearby Mission Beach area. Feral pig control should be implemented in each of the management units identified in this study. The control should be coordinated across properties within each management unit to prevent re-colonisation from adjacent localities. The adjacent rainforest and National Park Estates, as well as the rainforest-crop boundary should be included in a simultaneous control operation for greater success.
Resumo:
Wireless networked control systems (WNCSs) have been widely used in the areas of manufacturing and industrial processing over the last few years. They provide real-time control with a unique characteristic: periodic traffic. These systems have a time-critical requirement. Due to current wireless mechanisms, the WNCS performance suffers from long time-varying delays, packet dropout, and inefficient channel utilization. Current wirelessly networked applications like WNCSs are designed upon the layered architecture basis. The features of this layered architecture constrain the performance of these demanding applications. Numerous efforts have attempted to use cross-layer design (CLD) approaches to improve the performance of various networked applications. However, the existing research rarely considers large-scale networks and congestion network conditions in WNCSs. In addition, there is a lack of discussions on how to apply CLD approaches in WNCSs. This thesis proposes a cross-layer design methodology to address the issues of periodic traffic timeliness, as well as to promote the efficiency of channel utilization in WNCSs. The design of the proposed CLD is highlighted by the measurement of the underlying network condition, the classification of the network state, and the adjustment of sampling period between sensors and controllers. This period adjustment is able to maintain the minimally allowable sampling period, and also maximize the control performance. Extensive simulations are conducted using the network simulator NS-2 to evaluate the performance of the proposed CLD. The comparative studies involve two aspects of communications, with and without using the proposed CLD, respectively. The results show that the proposed CLD is capable of fulfilling the timeliness requirement under congested network conditions, and is also able to improve the channel utilization efficiency and the proportion of effective data in WNCSs.
Resumo:
This paper outlines an innovative and feasible flight control scheme for a rotary-wing unmanned aerial system (RUAS) with guaranteed safety and reliable flight quality in a gusty environment. The proposed control methodology aims to increase gust-attenuation capability of a RUAS to ensure improved flight performance when strong gusts occur. Based on the design of an effective estimator, an altitude controller is firstly constructed to synchronously compensate for fluctuations of the main rotor thrust which might lead to crashes in a gusty environment. Afterwards, a nonlinear state feedback controller is proposed to stabilize horizontal positions of the RUAS with gust-attenuation property. Performance of the proposed control framework is evaluated using parameters of a Vario XLC helicopter and high-fidelity simulations show that the proposed controllers can effectively reduce side-effect of gusts and demonstrate performance improvement when compared with the proportional-integral-derivative (PID) controllers.
Resumo:
This thesis was a step forward in improving the stability of power systems by applying new control and modelling techniques. The developed methods use the data obtained from voltage angle measurement devices which are synchronized with GPS signals to stabilize the system and avoid system-wide blackouts in the event of severe faults. New approaches were developed in this research for identifying and estimating reduced dynamic system models using phasor measurement units. The main goal of this research is achieved by integrating the developed methods to obtain a feasible wide-area control system for stabilizing the power systems.
Resumo:
Background: Previous attempts at costing infection control programmes have tended to focus on accounting costs rather than economic costs. For studies using economic costs, estimates tend to be quite crude and probably underestimate the true cost. One of the largest costs of any intervention is staff time, but this cost is difficult to quantify and has been largely ignored in previous attempts. Aim: To design and evaluate the costs of hospital-based infection control interventions or programmes. This article also discusses several issues to consider when costing interventions, and suggests strategies for overcoming these issues. Methods: Previous literature and techniques in both health economics and psychology are reviewed and synthesized. Findings: This article provides a set of generic, transferable costing guidelines. Key principles such as definition of study scope and focus on large costs, as well as pitfalls (e.g. overconfidence and uncertainty), are discussed. Conclusion: These new guidelines can be used by hospital staff and other researchers to cost their infection control programmes and interventions more accurately.
Resumo:
Matched case–control research designs can be useful because matching can increase power due to reduced variability between subjects. However, inappropriate statistical analysis of matched data could result in a change in the strength of association between the dependent and independent variables or a change in the significance of the findings. We sought to ascertain whether matched case–control studies published in the nursing literature utilized appropriate statistical analyses. Of 41 articles identified that met the inclusion criteria, 31 (76%) used an inappropriate statistical test for comparing data derived from case subjects and their matched controls. In response to this finding, we developed an algorithm to support decision-making regarding statistical tests for matched case–control studies.
Resumo:
Background: Side effects of the medications used for procedural sedation and analgesia in the cardiac catheterisation laboratory are known to cause impaired respiratory function. Impaired respiratory function poses considerable risk to patient safety as it can lead to inadequate oxygenation. Having knowledge about the conditions that predict impaired respiratory function prior to the procedure would enable nurses to identify at-risk patients and selectively implement intensive respiratory monitoring. This would reduce the possibility of inadequate oxygenation occurring. Aim: To identify pre-procedure risk factors for impaired respiratory function during nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory. Design: Retrospective matched case–control. Methods: 21 cases of impaired respiratory function were identified and matched to 113 controls from a consecutive cohort of patients over 18 years of age. Conditional logistic regression was used to identify risk factors for impaired respiratory function. Results: With each additional indicator of acute illness, case patients were nearly two times more likely than their controls to experience impaired respiratory function (OR 1.78; 95% CI 1.19–2.67; p = 0.005). Indicators of acute illness included emergency admission, being transferred from a critical care unit for the procedure or requiring respiratory or haemodynamic support in the lead up to the procedure. Conclusion: Several factors that predict the likelihood of impaired respiratory function were identified. The results from this study could be used to inform prospective studies investigating the effectiveness of interventions for impaired respiratory function during nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory.
Resumo:
This paper presents practical vision-based collision avoidance for objects approximating a single point feature. Using a spherical camera model, a visual predictive control scheme guides the aircraft around the object along a conical spiral trajectory. Visibility, state and control constraints are considered explicitly in the controller design by combining image and vehicle dynamics in the process model, and solving the nonlinear optimization problem over the resulting state space. Importantly, range is not required. Instead, the principles of conical spiral motion are used to design an objective function that simultaneously guides the aircraft along the avoidance trajectory, whilst providing an indication of the appropriate point to stop the spiral behaviour. Our approach is aimed at providing a potential solution to the See and Avoid problem for unmanned aircraft and is demonstrated through a series.
Resumo:
The dc capacitors voltage unbalancing is the main technical drawback of a diode-clamped multilevel inverter (DCMLI), with more than three levels. A voltage-balancing circuit based on buck–boost chopper connected to the dc link of DCMLI is a reliable and robust solution to this problem. This study presents four different schemes for controlling the chopper circuit to achieve the capacitor voltages equalisation. These can be broadly categorised as single-pulse, multi-pulse and hysteresis band current control schemes. The single-pulse scheme does not involve faster switching actions but need the chopper devices to be rated for higher current. The chopper devices current rating can be kept limited by using the multi-pulse scheme but it involves faster switching actions and slower response. The hysteresis band current control scheme offers faster dynamics, lower current rating of the chopper devices and can nullify the initial voltage imbalance as well. However, it involves much faster switching actions which may not be feasible for some of its applications. Therefore depending on the system requirements and ratings, one of these schemes may be used. The performance and validity of the proposed schemes are confirmed through both simulation and experimental investigations on a prototype five-level diode-clamped inverter.
Resumo:
Often voltage rise along low voltage (LV) networks limits their capacity to accommodate more renewable energy (RE) sources. This paper proposes a robust and effective approach to coordinate customers' resources and control voltage rise in LV networks, where photovoltaics (PVs) are considered as the RE sources. The proposed coordination algorithm includes both localized and distributed control strategies. The localized strategy determines the value of PV inverter active and reactive power, while the distributed strategy coordinates customers' energy storage units (ESUs). To verify the effectiveness of proposed approach, a typical residential LV network is used and simulated in the PSCAD-EMTC platform.
Resumo:
The control paradigms of the distributed generation (DG) sources in the smart grid are realised by either utilising virtual power plant (VPP) or by employing MicroGrid structures. Both VPP and MicroGrid are presented with the problem of control of power flow between their comprising DG sources. This study depicts this issue for VPP and proposes a novel and improved universal active and reactive power flow controllers for three-phase pulse width modulated voltage source inverters (PWM-VSI) operating in the VPP environment. The proposed controller takes into account all cases of R-X relationship, thus allowing it to function in systems operating at high, medium (MV) and low-voltage (LV) levels. Also proposed control scheme for the first time in an inverter control takes into account the capacitance of the transmission line which is an important factor to accurately represent medium length transmission lines. This allows the proposed control scheme to be applied in VPP structures, where DG sources can operate at MV LV levels over a short/medium length transmission line. The authors also conducted small signal stability analysis of the proposed controller and compared it against the small signal study of the existing controllers.
Resumo:
A work-based professional development program was offered to a group of registered nurses working in palliative care. The goal of the program was to improve skills in psychosocial care (Yates et al., 1996). Participants were encouraged to reflect critically on their practice experience within a group setting. The focus of the group discussion and reflection were shared practice incidents. Each participant was given the opportunity to identify and describe an incident from their professional practice that presented a challenging issue within palliative nursing. This paper explores the themes of conflict and control, evident within the collection of fifteen practice incidents and discusses the nurses role as mediator. The concepts of patient advocacy and professional autonomy are challenged through the nurses experience of providing care within a hierarchical and bureaucratic health service. The outcome of reflection for the organization is most effective when shared experience and collective action (rather than individual practice) are the focus.
Resumo:
In the electricity market environment, coordination of system reliability and economics of a power system is of great significance in determining the available transfer capability (ATC). In addition, the risks associated with uncertainties should be properly addressed in the ATC determination process for risk-benefit maximization. Against this background, it is necessary that the ATC be optimally allocated and utilized within relative security constraints. First of all, the non-sequential Monte Carlo stimulation is employed to derive the probability density distribution of ATC of designated areas incorporating uncertainty factors. Second, on the basis of that, a multi-objective optimization model is formulated to determine the multi-area ATC so as to maximize the risk-benefits. Then, the solution to the developed model is achieved by the fast non-dominated sorting (NSGA-II) algorithm, which could decrease the risk caused by uncertainties while coordinating the ATCs of different areas. Finally, the IEEE 118-bus test system is served for demonstrating the essential features of the developed model and employed algorithm.
Resumo:
In this paper we apply port-Hamiltonian theory with the bondgraph modelling approach to the problem of formation control using partial measurements of relative positions. We present a control design that drives a group of vehicles to a desired formation without requiring inter-vehicle communications or global position and velocity measurements to be available. Our generic approach is applicable to any form of relative measurement between vehicles, but we specifically consider the important cases of relative bearings and relative distances. In the case of bearings, our theory closely relates to the field of image-based visual servo (IBVS) control. We present simulation results to support the developed theory.