927 resultados para Continuous steam injection and reservoir simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volatilization of ammonia (NH3) from animal manure is a major pathway for nitrogen (N) losses that cause eutrophication, acidification, and other environmental hazards. In this study, the effect of alternative techniques of manure treatment (aeration, separation, addition of peat) and application (broadcast spreading, band spreading, injection, incorporation by harrowing) on ammonia emissions in the field and on nitrogen uptake by ley or cereals was studied. The effect of a mixture of slurry and peat on soil properties was also investigated. The aim of this study was to find ways to improve the utilization of manure nitrogen and reduce its release to the environment. Injection into the soil or incorporation by harrowing clearly reduced ammonia volatilization from slurry more than did the surface application onto a smaller area by band spreading or reduction of the dry matter of slurry by aeration or separation. Surface application showed low ammonia volatilization, when pig slurry was applied to tilled bare clay soil or to spring wheat stands in early growth stages. Apparently, the properties of both slurry and soil enabled the rapid infiltration and absorption of slurry and its ammoniacal nitrogen by the soil. On ley, however, surface-applied cattle slurry lost about half of its ammoniacal nitrogen. The volatilization of ammonia from surface-applied peat manure was slow, but proceeded over a long period of time. After rain or irrigation, the peat manure layer on the soil surface retarded evaporation. Incorporation was less important for the fertilizer effect of peat manure than for pig slurry, but both manures were more effective when incorporated. Peat manure applications increase soil organic matter content and aggregate stability. Stubble mulch tillage hastens the effect in surface soil compared with ploughing. The apparent recovery of ammoniacal manure nitrogen in crop yield was higher with injection and incorporation than with surface applications. This was the case for leys as well as for spring cereals, even though ammonia losses from manures applied to cereals were relatively low with surface applications as well. The ammoniacal nitrogen of surface-applied slurry was obviously adsorbed by the very surface soil and remained mostly unavailable to plant roots in the dry soil. Supplementing manures with inorganic fertilizer nitrogen, which adds plant-available nitrogen to the soil at the start of growth, increased the overall recovery of applied nitrogen in crop yields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to unravel the effects of climate, topography, soil, and grazing management on soil organic carbon (SOC) stocks in the grazing lands of north-eastern Australia. We sampled for SOC stocks at 98 sites from 18 grazing properties across Queensland, Australia. These samples covered four nominal grazing management classes (Continuous, Rotational, Cell, and Exclosure), eight broad soil types, and a strong tropical to subtropical climatic gradient. Temperature and vapour-pressure deficit explained >80% of the variability of SOC stocks at cumulative equivalent mineral masses nominally representing 0-0.1 and 0-0.3m depths. Once detrended of climatic effects, SOC stocks were strongly influenced by total standing dry matter, soil type, and the dominant grass species. At 0-0.3m depth only, there was a weak negative association between stocking rate and climate-detrended SOC stocks, and Cell grazing was associated with smaller SOC stocks than Continuous grazing and Exclosure. In future, collection of quantitative information on stocking intensity, frequency, and duration may help to improve understanding of the effect of grazing management on SOC stocks. Further exploration of the links between grazing management and above- and below-ground biomass, perhaps inferred through remote sensing and/or simulation modelling, may assist large-area mapping of SOC stocks in northern Australia. © CSIRO 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

. Management of the invasive Vachellia nilotica indica infesting tropical grasslands of Northern Australia has remained unsuccessful to date. Presently Anomalococcus indicus is considered a potential agent in the biological management of V. n. indica. Whereas generic biological details of A. indicus have been known, their feeding activity and details of their mouthparts and the sensory structures that are associated with their feeding action are not known. This paper provides details of those gaps. Nymphal instars I and II feed on cortical-parenchyma cells of young stems of V. n. indica, whereas nymphal instars III and adult females feed on phloem elements of older shoots. Nymphal instars and adults (females) trigger stress symptoms in the feeding tissue with cells bearing enlarged and disfigured nuclei, cytoplasmic shrinkage, cytoplasmic trabeculae, abnormal protuberances and uneven cell wall thickening, unusual cell membrane proliferation, and exhausted and necrosed cells. Continuous nutrient extraction by A. indicus can cause stem death. We provide evidence that A. indicus, by virtue of its continuous feeding activity and intense population build up, can be an effective biological-management agent to regulate populations of V. n. indica in infested areas. © 2014 © 2014 Société entomologique de France.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European aspen (Populus tremula) is a keystone species for biodiversity in boreal forests. However, the future of aspen may be threatened, because large aspens have mostly been removed from managed forests, whereas regeneration and the long-term persistence of mature trees are subjects of concern in protected areas. Aspen is a pioneer tree, and it can reproduce both sexually by seed and asexually by root suckers. Through asexual reproduction aspen forms clones, groups of genetically identical trees (ramets). In my thesis, I have studied the structure of aspen populations in terms of number, size, clonal and demographic properties. Additionally, I have investigated the emergence and survival of seedlings as well as the seed quantity and quality in crosses between the European and hybrid aspen. To study the regeneration and population structure, mature aspens were recorded in old-growth and managed forests in eastern Finland based on a large-scale inventory (11 400 ha). In addition, small aspen trees were surveyed on sample plots. Clonal structure was investigated both by morphological characters and by DNA-based markers (microsatellites). Seedling emergence and survival was studied with two sowing experiments. With crosses between European and hybrid aspens we wanted to study whether elevated temperatures due to climate change would benefit the different crosses of European and hybrid aspen unequally and thus affect the gene flow between the two species. The average volumes of mature aspen were 5.3 m3/ha in continuous old-growth, and 0.8 m3/ha in managed forests. Results indicate also that large aspen trees in managed forests are a legacy of the past less intensively managed forest landscapes. Long-term persistence of aspen in protected areas can only be secured by restoration measures creating sufficiently large gaps for regeneration. More emphasis should be given to sparing aspens in thinnings and to retaining of mature aspens in regeneration cutting in managed forests. Aspen was found to be spatially aggregated in the landscape. This could be explained by site type, disturbance history and / or limitations in seed dispersal. Clonal structure does not explain the spatial aggregation, since average size of the clones was only 2.3 ramets, and most clones (70 %) consisted of just one ramet. The small size of the clones suggests that most of them are relatively young. Therefore, sexual reproduction may be more common than has previously been thought. Seedling emergence was most successful in mineral soil especially, when the site had been burned. Only few seedlings occurred on humus. Survival of the seedlings was low, and strongly dependent on moisture, but also on seedbed conditions. The seeds were found to maintain their germinability longer than has earlier been thought to be possible. Interspecific crosses produced more seeds with higher quality than intraspecific crosses. When temperature was elevated, germination of hybrid aspen seeds increased more than seeds from P. tremula x P. tremula crosses. These results suggest that hybrid aspen may have a significant genetic impact on the European aspen, and this effect may become strengthened by climate warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photopolymerization of methyl,ethyl,butyl, and hexyl methacrylates in solution was studied. The effect of initial initiator and monomer concentrations on the time evolution of polymer concentration (M) over bar (n) and PDI was examined. The reversible chain addition and beta-scission, and primary radical termination steps were included in the mechanism along with the classical steps. The rate equations were derived using continuous distribution kinetics and solved numerically to fit the experimental data. The regressed rate coefficients compared well with the literature data. The model predicted the instantaneous increase in (M) over bar (n) and PDI to steady state values. The rate coefficients exhibited a linear increase with the size of alkyl chain of the alkyl methacrylates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop several hardware and software simulation blocks for the TinyOS-2 (TOSSIM-T2) simulator. The choice of simulated hardware platform is the popular MICA2 mote. While the hardware simulation elements comprise of radio and external flash memory, the software blocks include an environment noise model, packet delivery model and an energy estimator block for the complete system. The hardware radio block uses the software environment noise model to sample the noise floor. The packet delivery model is built by establishing the SNR-PRR curve for the MICA2 system. The energy estimator block models energy consumption by Micro Controller Unit(MCU), Radio, LEDs, and external flash memory. Using the manufacturerpsilas data sheets we provide an estimate of the energy consumed by the hardware during transmission, reception and also track several of the MCUs states with the associated energy consumption. To study the effectiveness of this work, we take a case study of a paper presented in [1]. We obtain three sets of results for energy consumption through mathematical analysis, simulation using the blocks built into PowerTossim-T2 and finally laboratory measurements. Since there is a significant match between these result sets, we propose our blocks for T2 community to effectively test their application energy requirements and node life times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical models, used for atmospheric research, weather prediction and climate simulation, describe the state of the atmosphere over the heterogeneous surface of the Earth. Several fundamental properties of atmospheric models depend on orography, i.e. on the average elevation of land over a model area. The higher is the models' resolution, the more the details of orography directly influence the simulated atmospheric processes. This sets new requirements for the accuracy of the model formulations with respect to the spatially varying orography. Orography is always averaged, representing the surface elevation within the horizontal resolution of the model. In order to remove the smallest scales and steepest slopes, the continuous spectrum of orography is normally filtered (truncated) even more, typically beyond a few gridlengths of the model. This means, that in the numerical weather prediction (NWP) models, there will always be subgridscale orography effects, which cannot be explicitly resolved by numerical integration of the basic equations, but require parametrization. In the subgrid-scale, different physical processes contribute in different scales. The parametrized processes interact with the resolved-scale processes and with each other. This study contributes to building of a consistent, scale-dependent system of orography-related parametrizations for the High Resolution Limited Area Model (HIRLAM). The system comprises schemes for handling the effects of mesoscale (MSO) and small-scale (SSO) orographic effects on the simulated flow and a scheme of orographic effects on the surface-level radiation fluxes. Representation of orography, scale-dependencies of the simulated processes and interactions between the parametrized and resolved processes are discussed. From the high-resolution digital elevation data, orographic parameters are derived for both momentum and radiation flux parametrizations. Tools for diagnostics and validation are developed and presented. The parametrization schemes applied, developed and validated in this study, are currently being implemented into the reference version of HIRLAM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Africa is threatened by climate change. The adaptive capacity of local communities continues to be weakened by ineffective and inefficient livelihood strategies and inappropriate development interventions. One of the greatest challenges for climate change adaptation in Africa is related to the governance of natural resources used by vulnerable poor groups as assets for adaptation. Practical and good governance activities for adaptation in Africa is urgently and much needed to support adaptation actions, interventions and planning. The adaptation role of forests has not been as prominent in the international discourse and actions as their mitigation role. This study therefore focused on the forest as one of the natural resources used for adaptation. The general objective of this research was to assess the extent to which cases of current forest governance practices in four African countries Burkina Faso, The Democratic Republic of Congo (DRC), Ghana and Sudan are supportive to the adaptation of vulnerable societies and ecosystems to impacts of climate change. Qualitative and quantitative analyses from surveys, expert consultations and group discussions were used in analysing the case studies. The entire research was guided by three conceptual sets of thinking forest governance, climate change vulnerability and ecosystem services. Data for the research were collected from selected ongoing forestry activities and programmes. The study mainly dealt with forest management policies and practices that can improve the adaptation of forest ecosystems (Study I) and the adaptive capacity through the management of forest resources by vulnerable farmers (Studies II, III, IV and V). It was found that adaptation is not part of current forest policies, but, instead, policies contain elements of risk management practices, which are also relevant to the adaptation of forest ecosystems. These practices include, among others, the management of forest fires, forest genetic resources, non-timber resources and silvicultural practices. Better livelihood opportunities emerged as the priority for the farmers. These vulnerable farmers had different forms of forest management. They have a wide range of experience and practical knowledge relevant to ensure and achieve livelihood improvement alongside sustainable management and good governance of natural resources. The contributions of traded non-timber forest products to climate change adaptation appear limited for local communities, based on their distribution among the stakeholders in the market chain. Plantation (agro)forestry, if well implemented and managed by communities, has a high potential in reducing socio-ecological vulnerability by increasing the food production and restocking degraded forest lands. Integration of legal arrangements with continuous monitoring, evaluation and improvement may drive this activity to support short, medium and long term expectations related to adaptation processes. The study concludes that effective forest governance initiatives led by vulnerable poor groups represent one practical way to improve the adaptive capacities of socio-ecological systems against the impacts of climate change in Africa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments and computer simulation studies have revealed existence of rich dynamics in the orientational relaxation of molecules in confined systems such as water in reverse micelles, cyclodextrin cavities, and nanotubes. Here we introduce a novel finite length one dimensional Ising model to investigate the propagation and the annihilation of dynamical correlations in finite systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles. In our finite sized model, the two spins at the two end cells are oriented in the opposite directions to mimic the effects of surface that in real system fixes water orientation in the opposite directions. This produces opposite polarizations to propagate inside from the surface and to produce bulklike condition at the center. This model can be solved analytically for short chains. For long chains, we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm). We show that model nicely reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is nonexponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of relaxation of the spins undergoes a qualitative change with the emergence of a homogeneous dynamics where decay is predominantly exponential, again in agreement with experiments. (C) 2010 American Institute of Physics. doi: 10.1063/1.3474948]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recently developed microscopic theory of solvation dynamics in real dipolar liquids is used to calculate, for the first time, the solvation time correlation function in liquid acetonitrile, water and methanol. The calculated results are in excellent agreement with known experimental and computer simulation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a methodology to reconstruct 3D biological organs from image sequences or other scan data using readily available free softwares with the final goal of using the organs (3D solids) for finite element analysis. The methodology deals with issues such as segmentation, conversion to polygonal surface meshes, and finally conversion of these meshes to 3D solids. The user is able to control the detail or the level of complexity of the solid constructed. The methodology is illustrated using 3D reconstruction of a porcine liver as an example. Finally, the reconstructed liver is imported into the commercial software ANSYS, and together with a cyst inside the liver, a nonlinear analysis performed. The results confirm that the methodology can be used for obtaining 3D geometry of biological organs. The results also demonstrate that the geometry obtained by following this methodology can be used for the nonlinear finite element analysis of organs. The methodology (or the procedure) would be of use in surgery planning and surgery simulation since both of these extensively use finite elements for numerical simulations and it is better if these simulations are carried out on patient specific organ geometries. Instead of following the present methodology, it would cost a lot to buy a commercial software which can reconstruct 3D biological organs from scanned image sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop several hardware and software simulation blocks for the TinyOS-2 (TOSSIM-T2) simulator. The choice of simulated hardware platform is the popular MICA2 mote. While the hardware simulation elements comprise of radio and external flash memory, the software blocks include an environment noise model, packet delivery model and an energy estimator block for the complete system. The hardware radio block uses the software environment noise model to sample the noise floor.The packet delivery model is built by establishing the SNR-PRR curve for the MICA2 system. The energy estimator block models energy consumption by Micro Controller Unit(MCU), Radio,LEDs, and external flash memory. Using the manufacturer’s data sheets we provide an estimate of the energy consumed by the hardware during transmission, reception and also track several of the MCUs states with the associated energy consumption. To study the effectiveness of this work, we take a case study of a paper presented in [1]. We obtain three sets of results for energy consumption through mathematical analysis, simulation using the blocks built into PowerTossim-T2 and finally laboratory measurements. Since there is a significant match between these result sets, we propose our blocks for T2 community to effectively test their application energy requirements and node life times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the simulation results from the dynamic analysis of a Shape Memory Alloy (SMA) actuator. The emphasis is on understanding the dynamic behavior under various loading rates and boundary conditions, resulting in complex scenarios such as thermal and stress gradients. Also, due to the polycrystalline nature of SMA wires, presence of microstructural inhomogeneity is inevitable. Probing the effect of inhomogeneity on the dynamic behavior can facilitate the prediction of life and characteristics of SMA wire actuator under varieties of boundary and loading conditions. To study the effect of these factors, an initial boundary value problem of SMA wire is formulated. This is subsequently solved using finite element method. The dynamic response of the SMA wire actuator is analyzed under mechanical loading and results are reported. Effect of loading rate, micro-structural inhomogeneity and thermal boundary conditions on the dynamic response of SMA wire actuator is investigated and the simulation results are reported.