995 resultados para Constant-weight Codes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), non-orthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the OAF and NAF protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. In the two-relay case, the variable-NSDF protocol is shown to improve on the DMT of the best previously-known static protocol for higher values of multiplexing gain. Our results also establish that the fixed-NSDF protocol has a better DMT than the NAF protocol for any number of relays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A construction of a new family of distributed space time codes (DSTCs) having full diversity and low Maximum Likelihood (ML) decoding complexity is provided for the two phase based cooperative diversity protocols of Jing-Hassibi and the recently proposed Generalized Non-orthogonal Amplify and Forward (GNAF) protocol of Rajan et al. The salient feature of the proposed DSTCs is that they satisfy the extra constraints imposed by the protocols and are also four-group ML decodable which leads to significant reduction in ML decoding complexity compared to all existing DSTC constructions. Moreover these codes have uniform distribution of power among the relays as well as in time. Also, simulations results indicate that these codes perform better in comparison with the only known DSTC with the same rate and decoding complexity, namely the Coordinate Interleaved Orthogonal Design (CIOD). Furthermore, they perform very close to DSTCs from field extensions which have same rate but higher decoding complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given an undirected unweighted graph G = (V, E) and an integer k ≥ 1, we consider the problem of computing the edge connectivities of all those (s, t) vertex pairs, whose edge connectivity is at most k. We present an algorithm with expected running time Õ(m + nk3) for this problem, where |V| = n and |E| = m. Our output is a weighted tree T whose nodes are the sets V1, V2,..., V l of a partition of V, with the property that the edge connectivity in G between any two vertices s ε Vi and t ε Vj, for i ≠ j, is equal to the weight of the lightest edge on the path between Vi and Vj in T. Also, two vertices s and t belong to the same Vi for any i if and only if they have an edge connectivity greater than k. Currently, the best algorithm for this problem needs to compute all-pairs min-cuts in an O(nk) edge graph; this takes Õ(m + n5/2kmin{k1/2, n1/6}) time. Our algorithm is much faster for small values of k; in fact, it is faster whenever k is o(n5/6). Our algorithm yields the useful corollary that in Õ(m + nc3) time, where c is the size of the global min-cut, we can compute the edge connectivities of all those pairs of vertices whose edge connectivity is at most αc for some constant α. We also present an Õ(m + n) Monte Carlo algorithm for the approximate version of this problem. This algorithm is applicable to weighted graphs as well. Our algorithm, with some modifications, also solves another problem called the minimum T-cut problem. Given T ⊆ V of even cardinality, we present an Õ(m + nk3) algorithm to compute a minimum cut that splits T into two odd cardinality components, where k is the size of this cut.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An elementary combinatorial Tanner graph construction for a family of near-regular low density parity check (LDPC) codes achieving high girth is presented. These codes are near regular in the sense that the degree of a left/right vertex is allowed to differ by at most one from the average. The construction yields in quadratic time complexity an asymptotic code family with provable lower bounds on the rate and the girth for a given choice of block length and average degree. The construction gives flexibility in the choice of design parameters of the code like rate, girth and average degree. Performance simulations of iterative decoding algorithm for the AWGN channel on codes designed using the method demonstrate that these codes perform better than regular PEG codes and MacKay codes of similar length for all values of Signal to noise ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We look at graphical descriptions of block codes known as trellises, which illustrate connections between algebra and graph theory, and can be used to develop powerful decoding algorithms. Trellis sizes for linear block codes are known to grow exponentially with the code parameters. Of considerable interest to coding theorists therefore, are more compact descriptions called tail-biting trellises which in some cases can be much smaller than any conventional trellis for the same code . We derive some interesting properties of tail-biting trellises and present a new decoding algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For an n(t) transmit, n(r) receive antenna system (n(t) x n(r) system), a full-rate space time block code (STBC) transmits at least n(min) = min(n(t), n(r))complex symbols per channel use. The well-known Golden code is an example of a full-rate, full-diversity STBC for two transmit antennas. Its ML-decoding complexity is of the order of M(2.5) for square M-QAM. The Silver code for two transmit antennas has all the desirable properties of the Golden code except its coding gain, but offers lower ML-decoding complexity of the order of M(2). Importantly, the slight loss in coding gain is negligible compared to the advantage it offers in terms of lowering the ML-decoding complexity. For higher number of transmit antennas, the best known codes are the Perfect codes, which are full-rate, full-diversity, information lossless codes (for n(r) >= n(t)) but have a high ML-decoding complexity of the order of M(ntnmin) (for n(r) < n(t), the punctured Perfect codes are considered). In this paper, a scheme to obtain full-rate STBCs for 2(a) transmit antennas and any n(r) with reduced ML-decoding complexity of the order of M(nt)(n(min)-3/4)-0.5 is presented. The codes constructed are also information lossless for >= n(t), like the Perfect codes, and allow higher mutual information than the comparable punctured Perfect codes for n(r) < n(t). These codes are referred to as the generalized Silver codes, since they enjoy the same desirable properties as the comparable Perfect codes (except possibly the coding gain) with lower ML-decoding complexity, analogous to the Silver code and the Golden code for two transmit antennas. Simulation results of the symbol error rates for four and eight transmit antennas show that the generalized Silver codes match the punctured Perfect codes in error performance while offering lower ML-decoding complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed space-time block codes (DSTBCs) from complex orthogonal designs (CODs) (both square and nonsquare), coordinate interleaved orthogonal designs (CIODs), and Clifford unitary weight designs (CUWDs) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using amplify and forward protocol. For such networks, in this paper, three new classes of high rate, training-symbol embedded (TSE) SSD DSTBCs are constructed: TSE-CODs, TSE-CIODs, and TSE-CUWDs. The proposed codes include the training symbols inside the structure of the code which is shown to be the key point to obtain the SSD property along with the channel estimation capability. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations and the constellations for which TSE-CIODs and TSE-CUWDs offer full-diversity are characterized. It is shown that DSTBCs from nonsquare TSE-CODs provide better rates (in symbols per channel use) when compared to the known SSD DSTBCs for relay networks. Important from the practical point of view, the proposed DSTBCs do not contain any zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on/off transitions within every codeword, and, thus, avoid the antenna switching problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerating codes are a class of distributed storage codes that allow for efficient repair of failed nodes, as compared to traditional erasure codes. An [n, k, d] regenerating code permits the data to be recovered by connecting to any k of the n nodes in the network, while requiring that a failed node be repaired by connecting to any d nodes. The amount of data downloaded for repair is typically much smaller than the size of the source data. Previous constructions of exact-regenerating codes have been confined to the case n = d + 1. In this paper, we present optimal, explicit constructions of (a) Minimum Bandwidth Regenerating (MBR) codes for all values of [n, k, d] and (b) Minimum Storage Regenerating (MSR) codes for all [n, k, d >= 2k - 2], using a new product-matrix framework. The product-matrix framework is also shown to significantly simplify system operation. To the best of our knowledge, these are the first constructions of exact-regenerating codes that allow the number n of nodes in the network, to be chosen independent of the other parameters. The paper also contains a simpler description, in the product-matrix framework, of a previously constructed MSR code with [n = d + 1, k, d >= 2k - 1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Space-Time Block Code (STBC) in K symbols (variables) is called g-group decodable STBC if its maximum-likelihood decoding metric can be written as a sum of g terms such that each term is a function of a subset of the K variables and each variable appears in only one term. In this paper we provide a general structure of the weight matrices of multi-group decodable codes using Clifford algebras. Without assuming that the number of variables in each group to be the same, a method of explicitly constructing the weight matrices of full-diversity, delay-optimal g-group decodable codes is presented for arbitrary number of antennas. For the special case of Nt=2a we construct two subclass of codes: (i) A class of 2a-group decodable codes with rate a2(a−1), which is, equivalently, a class of Single-Symbol Decodable codes, (ii) A class of (2a−2)-group decodable with rate (a−1)2(a−2), i.e., a class of Double-Symbol Decodable codes. Simulation results show that the DSD codes of this paper perform better than previously known Quasi-Orthogonal Designs.