901 resultados para Computer networks -- TFC
Resumo:
A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches.
Resumo:
In this paper, we will address the endeavors of three disciplines, Psychology, Neuroscience, and Artificial Neural Network (ANN) modeling, in explaining how the mind perceives and attends information. More precisely, we will shed some light on the efforts to understand the allocation of attentional resources to the processing of emotional stimuli. This review aims at informing the three disciplines about converging points of their research and to provide a starting point for discussion.
Resumo:
Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14–30 and 40–80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, such as for neuronal communication, attention, memory, and feature binding. However, recent studies using recordings of single-unit activity and local field potentials report that neuronal synchronization may occur with non-zero phase lags. This raises the questions whether zero-lag synchrony can occur in the brain and, if so, under which conditions. We used analytical methods and computer simulations to investigate which connectivity between neuronal populations allows or prohibits zero-lag synchrony. We did so for a model where two oscillators interact via a relay oscillator. Analytical results and computer simulations were obtained for both type I Mirollo–Strogatz neurons and type II Hodgkin–Huxley neurons. We have investigated the dynamics of the model for various types of synaptic coupling and importantly considered the potential impact of Spike-Timing Dependent Plasticity (STDP) and its learning window. We confirm previous results that zero-lag synchrony can be achieved in this configuration. This is much easier to achieve with Hodgkin–Huxley neurons, which have a biphasic phase response curve, than for type I neurons. STDP facilitates zero-lag synchrony as it adjusts the synaptic strengths such that zero-lag synchrony is feasible for a much larger range of parameters than without STDP.
Resumo:
Body Sensor Networks (BSNs) have been recently introduced for the remote monitoring of human activities in a broad range of application domains, such as health care, emergency management, fitness and behaviour surveillance. BSNs can be deployed in a community of people and can generate large amounts of contextual data that require a scalable approach for storage, processing and analysis. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of data streams generated in BSNs. This paper proposes BodyCloud, a SaaS approach for community BSNs that supports the development and deployment of Cloud-assisted BSN applications. BodyCloud is a multi-tier application-level architecture that integrates a Cloud computing platform and BSN data streams middleware. BodyCloud provides programming abstractions that allow the rapid development of community BSN applications. This work describes the general architecture of the proposed approach and presents a case study for the real-time monitoring and analysis of cardiac data streams of many individuals.
Resumo:
Long Term Evolution based networks lack native support for Circuit Switched (CS) services. The Evolved Packet System (EPS) which includes the Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) and Evolved Packet Core (EPC) is a purely all-IP packet system. This introduces the problem of how to provide voice call support when a user is within an LTE network and how to ensure voice service continuity when the user moves out of LTE coverage area. Different technologies have been proposed for the purpose of providing a voice to LTE users and to ensure the service continues outside LTE networks. The aim of this paper is to analyze and evaluate the overall performance of these technologies along with Single Radio Voice Call Continuity (SRVCC) Inter-RAT handover to Universal Terrestrial Radio Access Networks/ GSM-EDGE radio access Networks (UTRAN/GERAN). The possible solutions for providing voice call and service continuity over LTE-based networks are Circuit Switched Fall Back (CSFB), Voice over LTE via Generic Access (VoLGA), Voice over LTE (VoLTE) based on IMS/MMTel with SRVCC and Over The Top (OTT) services like Skype. This paper focuses mainly on the 3GPP standard solutions to implement voice over LTE. The paper compares various aspects of these solutions and suggests a possible roadmap that mobile operators can adopt to provide seamless voice over LTE.
Resumo:
The dorsal striatum (DS) is involved in various forms of learning and memory such as procedural learning, habit learning, reward-association and emotional learning. We have previously reported that bilateral DS lesions disrupt tone fear conditioning (TFC), but not contextual fear conditioning (CFC) [Ferreira TL, Moreira KM, Ikeda DC, Bueno OFA, Oliveira MGM (2003) Effects of dorsal striatum lesions in tone fear conditioning and contextual fear conditioning. Brain Res 987:17-24]. To further elucidate the participation of DS in emotional learning, in the present study, we investigated the effects of bilateral pretest (postraining) electrolytic DS lesions on TFC. Given the well-acknowledged role of the amygdala in emotional learning, we also examined a possible cooperation between DS and the amygdala in TFC, by using asymmetrical electrolytic lesions, consisting of a unilateral lesion of the central amygdaloid nucleus (CeA) combined to a contralateral DS lesion. The results show that pre-test bilateral DS lesions disrupt TFC responses, suggesting that DS plays a role in the expression of TFC. More importantly, rats with asymmetrical pre-training lesions were impaired in TFC, but not in CFC tasks. This result was confirmed with muscimol asymmetrical microinjections in DS and CeA, which reversibly inactivate these structures. On the other hand, similar pretest lesions as well as unilateral electrolytic lesions of CeA and DS in the same hemisphere did not affect TFC. Possible anatomical substrates underlying the observed effects are proposed. Overall, the present results underscore that other routes, aside from the well-established CeA projections to the periaqueductal gray, may contribute to the acquisition/consolidation of the freezing response associated to a TFC task. It is suggested that CeA may presumably influence DS processing via a synaptic relay on dopaminergic neurons of the substantia nigra compacta and retrorubral nucleus. The present observations are also in line with other studies showing that TFC and CFC responses are mediated by different anatomical networks. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Navigation is a broad topic that has been receiving considerable attention from the mobile robotic community over the years. In order to execute autonomous driving in outdoor urban environments it is necessary to identify parts of the terrain that can be traversed and parts that should be avoided. This paper describes an analyses of terrain identification based on different visual information using a MLP artificial neural network and combining responses of many classifiers. Experimental tests using a vehicle and a video camera have been conducted in real scenarios to evaluate the proposed approach.
Resumo:
Security administrators face the challenge of designing, deploying and maintaining a variety of configuration files related to security systems, especially in large-scale networks. These files have heterogeneous syntaxes and follow differing semantic concepts. Nevertheless, they are interdependent due to security services having to cooperate and their configuration to be consistent with each other, so that global security policies are completely and correctly enforced. To tackle this problem, our approach supports a comfortable definition of an abstract high-level security policy and provides an automated derivation of the desired configuration files. It is an extension of policy-based management and policy hierarchies, combining model-based management (MBM) with system modularization. MBM employs an object-oriented model of the managed system to obtain the details needed for automated policy refinement. The modularization into abstract subsystems (ASs) segment the system-and the model-into units which more closely encapsulate related system components and provide focused abstract views. As a result, scalability is achieved and even comprehensive IT systems can be modelled in a unified manner. The associated tool MoBaSeC (Model-Based-Service-Configuration) supports interactive graphical modelling, automated model analysis and policy refinement with the derivation of configuration files. We describe the MBM and AS approaches, outline the tool functions and exemplify their applications and results obtained. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Cellular neural networks (CNNs) have locally connected neurons. This characteristic makes CNNs adequate for hardware implementation and, consequently, for their employment on a variety of applications as real-time image processing and construction of efficient associative memories. Adjustments of CNN parameters is a complex problem involved in the configuration of CNN for associative memories. This paper reviews methods of associative memory design based on CNNs, and provides comparative performance analysis of these approaches.
Resumo:
Cortical bones, essential for mechanical support and structure in many animals, involve a large number of canals organized in intricate fashion. By using state-of-the art image analysis and computer graphics, the 3D reconstruction of a whole bone (phalange) of a young chicken was obtained and represented in terms of a complex network where each canal was associated to an edge and every confluence of three or more canals yielded a respective node. The representation of the bone canal structure as a complex network has allowed several methods to be applied in order to characterize and analyze the canal system organization and the robustness. First, the distribution of the node degrees (i.e. the number of canals connected to each node) confirmed previous indications that bone canal networks follow a power law, and therefore present some highly connected nodes (hubs). The bone network was also found to be partitioned into communities or modules, i.e. groups of nodes which are more intensely connected to one another than with the rest of the network. We verified that each community exhibited distinct topological properties that are possibly linked with their specific function. In order to better understand the organization of the bone network, its resilience to two types of failures (random attack and cascaded failures) was also quantified comparatively to randomized and regular counterparts. The results indicate that the modular structure improves the robustness of the bone network when compared to a regular network with the same average degree and number of nodes. The effects of disease processes (e. g., osteoporosis) and mutations in genes (e.g., BMP4) that occur at the molecular level can now be investigated at the mesoscopic level by using network based approaches.
Resumo:
Complex networks have been increasingly used in text analysis, including in connection with natural language processing tools, as important text features appear to be captured by the topology and dynamics of the networks. Following previous works that apply complex networks concepts to text quality measurement, summary evaluation, and author characterization, we now focus on machine translation (MT). In this paper we assess the possible representation of texts as complex networks to evaluate cross-linguistic issues inherent in manual and machine translation. We show that different quality translations generated by NIT tools can be distinguished from their manual counterparts by means of metrics such as in-(ID) and out-degrees (OD), clustering coefficient (CC), and shortest paths (SP). For instance, we demonstrate that the average OD in networks of automatic translations consistently exceeds the values obtained for manual ones, and that the CC values of source texts are not preserved for manual translations, but are for good automatic translations. This probably reflects the text rearrangements humans perform during manual translation. We envisage that such findings could lead to better NIT tools and automatic evaluation metrics.
Resumo:
Large-scale simulations of parts of the brain using detailed neuronal models to improve our understanding of brain functions are becoming a reality with the usage of supercomputers and large clusters. However, the high acquisition and maintenance cost of these computers, including the physical space, air conditioning, and electrical power, limits the number of simulations of this kind that scientists can perform. Modern commodity graphical cards, based on the CUDA platform, contain graphical processing units (GPUs) composed of hundreds of processors that can simultaneously execute thousands of threads and thus constitute a low-cost solution for many high-performance computing applications. In this work, we present a CUDA algorithm that enables the execution, on multiple GPUs, of simulations of large-scale networks composed of biologically realistic Hodgkin-Huxley neurons. The algorithm represents each neuron as a CUDA thread, which solves the set of coupled differential equations that model each neuron. Communication among neurons located in different GPUs is coordinated by the CPU. We obtained speedups of 40 for the simulation of 200k neurons that received random external input and speedups of 9 for a network with 200k neurons and 20M neuronal connections, in a single computer with two graphic boards with two GPUs each, when compared with a modern quad-core CPU. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Managing software maintenance is rarely a precise task due to uncertainties concerned with resources and services descriptions. Even when a well-established maintenance process is followed, the risk of delaying tasks remains if the new services are not precisely described or when resources change during process execution. Also, the delay of a task at an early process stage may represent a different delay at the end of the process, depending on complexity or services reliability requirements. This paper presents a knowledge-based representation (Bayesian Networks) for maintenance project delays based on specialists experience and a corresponding tool to help in managing software maintenance projects. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Several gene regulatory network models containing concepts of directionality at the edges have been proposed. However, only a few reports have an interpretable definition of directionality. Here, differently from the standard causality concept defined by Pearl, we introduce the concept of contagion in order to infer directionality at the edges, i.e., asymmetries in gene expression dependences of regulatory networks. Moreover, we present a bootstrap algorithm in order to test the contagion concept. This technique was applied in simulated data and, also, in an actual large sample of biological data. Literature review has confirmed some genes identified by contagion as actually belonging to the TP53 pathway.