1000 resultados para Computação quântica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the dynamics of reaction-diffusion fronts under the influence of multiplicative noise. An approximate theoretical scheme is introduced to compute the velocity of the front and its diffusive wandering due to the presence of noise. The theoretical approach is based on a multiple scale analysis rather than on a small noise expansion and is confirmed with numerical simulations for a wide range of the noise intensity. We report on the possibility of noise sustained solutions with a continuum of possible velocities, in situations where only a single velocity is allowed without noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the eta'N interaction within a chiral unitary approach which includes piN , etaN and related pseudoscalar meson-baryon coupled channels. Since the SU(3) singlet does not contribute to the standard interaction and the eta' is mostly a singlet, the resulting scattering amplitude is very small and inconsistent with experimental estimations of the eta' N scattering length. The additional consideration of vector meson-baryon states into the coupled channel scheme, via normal and anomalous couplings of pseudoscalar to vector mesons, enhances substantially the eta' N amplitude. We also exploit the freedom of adding to the Lagrangian a new term, allowed by the symmetries of QCD, which couples baryons to the singlet meson of SU(3). Adjusting the unknown strength to the eta' N scattering length, we obtain predictions for the elastic eta'N -> etaN and inelastic eta' N -> etaN , piN , KLambda, KEpsilon cross sections at low eta' energies, and discuss their significance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the signatures of rotational and phase symmetry breaking in small rotating clouds of trapped ultracold Bose atoms by looking at rigorously defined condensate wave function. Rotational symmetry breaking occurs in narrow frequency windows, where energy degeneracy between the lowest energy states of different total angular momentum takes place. This leads to a complex condensate wave function that exhibits vortices clearly seen as holes in the density, as well as characteristic local phase patterns, reflecting the appearance of vorticities. Phase symmetry (or gauge symmetry) breaking, on the other hand, is clearly manifested in the interference of two independent rotating clouds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In arbitrary dimensional spaces the Lie algebra of the Poincaré group is seen to be a subalgebra of the complex Galilei algebra, while the Galilei algebra is a subalgebra of Poincar algebra. The usual contraction of the Poincar to the Galilei group is seen to be equivalent to a certain coordinate transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we develop the canonical formalism for constrained systems with a finite number of degrees of freedom by making use of the PoincarCartan integral invariant method. A set of variables suitable for the reduction to the physical ones can be obtained by means of a canonical transformation. From the invariance of the PoincarCartan integral under canonical transformations we get the form of the equations of motion for the physical variables of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a dynamical system defined by a singular Lagrangian, canonical Noether symmetries are characterized in terms of their commutation relations with the evolution operators of Lagrangian and Hamiltonian formalisms. Separate characterizations are given in phase space, in velocity space, and through an evolution operator that links both spaces. 2000 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a few years now, the study of quantum field theories in partially compactified space-time manifolds has acquired increasing importance in several domains of quantum physics. Let me just mention the issues of dimensional reduction and spontaneous compactification, and the multiple questions associated with the study of quantum field theories in the presence of boundaries (like the Casimir effect) and on curved space-time (manifolds with curvature and nontrivial topology), a step towards quantum gravity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extend the HamiltonJacobi formulation to constrained dynamical systems. The discussion covers both the case of first-class constraints alone and that of first- and second-class constraints combined. The HamiltonDirac equations are recovered as characteristic of the system of partial differential equations satisfied by the HamiltonJacobi function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The equivalence between the Lagrangian and Hamiltonian formalism is studied for constraint systems. A procedure to construct the Lagrangian constraints from the Hamiltonian constraints is given. Those Hamiltonian constraints that are first class with respect to the Hamiltonian constraints produce Lagrangian constraints that are FL-projectable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We generalize the analogous of Lee Hwa Chungs theorem to the case of presymplectic manifolds. As an application, we study the canonical transformations of a canonical system (M, S, O). The role of Dirac brackets as a test of canonicity is clarified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop a theory of canonical transformations for presymplectic systems, reducing this concept to that of canonical transformations for regular coisotropic canonical systems. In this way we can also link these with the usual canonical transformations for the symplectic reduced phase space. Furthermore, the concept of a generating function arises in a natural way as well as that of gauge group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extend the HamiltonJacobi formulation to constrained dynamical systems. The discussion covers both the case of first-class constraints alone and that of first- and second-class constraints combined. The HamiltonDirac equations are recovered as characteristic of the system of partial differential equations satisfied by the HamiltonJacobi function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of a previous work, concerning a method for performing the canonical formalism for constrained systems, are extended when the canonical transformation proposed in that paper is explicitly time dependent.