963 resultados para Composite membranes
Resumo:
Structural Health Monitoring has gained wide acceptance in the recent past as a means to monitor a structure and provide an early warning of an unsafe condition using real-time data. Utilization of structurally integrated, distributed sensors to monitor the health of a structure through accurate interpretation of sensor signals and real-time data processing can greatly reduce the inspection burden. The rapid improvement of the Fiber Optic Sensor technology for strain, vibration, ultrasonic and acoustic emission measurements in recent times makes it feasible alternative to the traditional strain gauges, PVDF and conventional Piezoelectric sensors used for Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM). Optical fiber-based sensors offer advantages over conventional strain gauges, and PZT devices in terms of size, ease of embedment, immunity from electromagnetic interference (EMI) and potential for multiplexing a number of sensors. The objective of this paper is to demonstrate the acoustic wave sensing using Extrinsic Fabry-Perot Interferometric (EFPI) sensor on a GFRP composite laminates. For this purpose experiments have been carried out initially for strain measurement with Fiber Optic Sensors on GFRP laminates with intentionally introduced holes of different sizes as defects. The results obtained from these experiments are presented in this paper. Numerical modeling has been carried out to obtain the relationship between the defect size and strain.
Resumo:
The magnetic properties of iron-filled multi-walled carbon nanotubes dispersed in polystyrene (Fe-MWNT/PS) have been investigated as a function of Fe-MWNT concentration (0.1-15 wt%) from 300 to 10 K. Electron microscopy studies indicate that Fe nanorods (aspect ratio similar to 5) remain trapped at various lengths of MWNT and are thus, prevented from oxidation as well as aggregation. The magnetization versus applied field (M-H loop) data of 0.1 wt% of Fe-MWNTs in PS show an anomalous narrowing at low temperatures which is due to the significant contribution from shape anisotropy of Fe nanorods. The remanence shows a threshold feature at 1 wt%. The enhanced coercivity shows a maximum at 1 wt% due to the dominant dipolar interactions among Fe nanorods. Also the squareness ratio shows a maximum at 1 wt%.
Resumo:
The influence of polymer grafting on the phase behavior and elastic properties of two tail lipid bilayers have been investigated using dissipative particle dynamics simulations. For the range of polymer lengths studied, the L(c) to L(alpha) transition temperature is not significantly affected for grafting fractions, G(f) between 0.16 and 0.25. A decrease in the transition temperature is observed at a relatively high grafting fraction, G(f) = 0.36. At low temperatures, a small increase in the area per head group, a(h), at high G(f) leads to an increase in the chain tilt, inducing order in the bilayer and the solvent. The onset of the phase transition occurs with the nucleation of small patches of thinned membrane which grow and form continuous domains as the temperature increases. This region is the co-existence region between the L(beta)(thick) and the L(alpha)(thin) phases. The simulation results for the membrane area expansion as a function of the grafting density conform extremely well to the scalings predicted by self-consistent mean field theories. We find that the bending modulus shows a small decrease for short polymers (number of beads, N(p) = 10) and low G(f), where the influence of polymer is reduced when compared to the effect of the increased a(h). For longer polymers (N(p) > 15), the bending modulus increases monotonically with increase in grafted polymer. Using the results from mean field theory, we partition the contributions to the bending modulus from the membrane and the polymer and show that the dominant contribution to the increased bending modulus arises from the grafted polymer. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3631940]
Resumo:
In this paper, a model for composite beam with embedded de-lamination is developed using the wavelet based spectral finite element (WSFE) method particularly for damage detection using wave propagation analysis. The simulated responses are used as surrogate experimental results for the inverse problem of detection of damage using wavelet filtering. The WSFE technique is very similar to the fast fourier transform (FFT) based spectral finite element (FSFE) except that it uses compactly supported Daubechies scaling function approximation in time. Unlike FSFE formulation with periodicity assumption, the wavelet-based method allows imposition of initial values and thus is free from wrap around problems. This helps in analysis of finite length undamped structures, where the FSFE method fails to simulate accurate response. First, numerical experiments are performed to study the effect of de-lamination on the wave propagation characteristics. The responses are simulated for different de-lamination configurations for both broad-band and narrow-band excitations. Next, simulated responses are used for damage detection using wavelet analysis.
Resumo:
In order to demonstrate the feasibility of Active Fiber Composites (AFC) as sensors for detecting damage, a pretwisted strip made of AFC with symmetric free-edge delamination is considered in this paper. The strain developed on the top/bottom of the strip is measured to detect and assess delamination. Variational Asymptotic Method (VAM) is used in the development of a non-classical non-linear cross sectional model of the strip. The original three dimensional (3D) problem is simplified by the decomposition into two simpler problems: a two-dimensional (2D) problem, which provides in a compact form the cross-sectional properties using VAM, and a non-linear one-dimensional (1D) problem along the length of the beam. This procedure gives the non-linear stiffnesses, which are very sensitive to damage, at any given cross-section of the strip. The developed model is used to study a special case of cantilevered laminated strip with antisymmetric layup, loaded only by an axial force at the tip. The charge generated in the AFC lamina is derived in closed form in terms of the 1D strain measures. It is observed that delamination length and location have a definite influence on the charge developed in the AFC lamina. Also, sensor voltage output distribution along the length of the beam is obtained using evenly distributed electrode strip. These data could in turn be used to detect the presence of damage.
Resumo:
The dry sliding wear and friction behaviour of A356 Al alloy and its composites containing 10 and 20 vol.% SiC(P) have been studied using pin-on-disc set up. In these tests, A356 Al alloy and its composites are used as disc whereas brake pad was used in the form of pins. Wear tests were carried out at a load of 192 N and the sliding speed was varied from 1 to 5 m/s. Tests were done for a sliding distance of 15 km. The effects of sliding velocity on the wear rate, coefficient of friction and nature of tribolayers formed on discs have been studied. Wear rates of composites as calculated by weight loss method, found to be negative at sliding speed of more than 2 m/s. Worn surfaces of pins and discs have been analyzed using scanning electron microscope. SEM and EDAX analysis of worn surfaces of composite discs showed formation of tribolayers, consisting of mixture of oxides of Al, Si, Cu, Ca, Ba, Mg, and Fe. In these layers, copper and barium content found to be increase with sliding speed in the case of composites. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Gibbs energies of formation of CoF2 and MnF2 have been measured in the temperature range from 700 to 1100 K using Al2O3-dispersed CaF2 solid electrolyte and Ni+NiF2 as the reference electrode. The dispersed solid electrolyte has higher conductivity than pure CaF2 thus permitting accurate measurements at lower temperatures. However, to prevent reaction between Al2O3 in the solid electrolyte and NiF2 (or CoF2) at the electrode, the dispersed solid electrolyte was coated with pure CaF2, thus creating a composite structure. The free energies of formation of CoF2 and MnF2 are (± 1700) J mol−1; {fx37-1} The third law analysis gives the enthalpy of formation of solid CoF2 as ΔH° (298·15 K) = −672·69 (± 0·1) kJ mol−1, which compares with a value of −671·5 (± 4) kJ mol−1 given in Janaf tables. For solid MnF2, ΔH°(298·15 K) = − 854·97 (± 0·13) kJ mol−1, which is significantly different from a value of −803·3 kJ mol−1 given in the compilation by Barinet al.
Resumo:
Rapid solidification of Ag‐53 at. % Se alloy resulted in the formation of a composite mixture of Ag2.5Se and Se. The microstructure consists of spherical Se grains of 2–20 μm size, randomly distributed in a matrix of Ag2.5 Se. The Se grains were found to be layered hexagonal while the Ag2.5 Se had an orthorhombic crystal structure. The unit cell size of this phase, however, was twice that reported for the equilibrium orthorhombic Ag2 Se compound. The conductivity σ variation with temperature in the range 80–320 K was found to be similar to that observed in degenerate semiconductors. The σ decreased from 295 Ω−1 cm−1 at room temperature to a saturation value of 70 Ω−1 cm−1 for temperatures <80 K. The results are discussed in terms of percolation conduction in the Ag2.5 Se phase.
Resumo:
Principles of design of composite instantaneous comparators (a combination of amplitude- and phase- comparison techniques) are laid out to provide directional, directional-reactance, nonoffset-resistance and conductance characteristices. The respective signals provided by the voltage transformer and the current transformer are directly used as relaying signals without resorting to any form of mixing. Phase shifts required, are obtained by using magnetic ferrite cores in a novel manner. Sampling units employing a combination of ferrite cores and semiconductor devices provide highly reliable designs. Special attention is paid to the choice of relaying signals, to eliminate the need for any synchronisation or modification and to avoid `image¿ characteristics. These factors have resulted in a considerable simplification of the practical circuitry. A thyristor AND circuit is employed in dual comparator units to provide the final tripping, and leads to a circuit which is much less sensitive to extraneous signals than a single-thyristor unit.
Resumo:
In this work composites of poly(3-hexylethiophene) (P3HT) and a thiophene derivative (7, 9-di (thiophen-2-yl)-8H-cyclopenta[a]acenaphthylen-8-one) (DTCPA) having donor acceptor architecture (DAD) were prepared. Photovoltaic properties of these hybrid composites were evaluated. DTCPA, which is a highly crystalline organic molecule with wide absorption range, was observed to improve the open circuit voltage of the solar cell. Furthermore, DTCPA crystals acts as a nucleating center and increases the molecular ordering of P3HT in the composite. Improved charge separation efficiency was observed by photoluminescence spectroscopy. Because of high built in potential in these devices, large open circuit voltage was observed. (C) 2011 Elsevier B.V. All rights reserved.