744 resultados para Cloud Computing, attori, piattaforme, Pattern, Orleans
Resumo:
Cet essai est présenté en tant que mémoire de maîtrise dans le cadre du programme de droit des technologies de l’information. Ce mémoire traite de différents modèles d’affaires qui ont pour caractéristique commune de commercialiser les données dans le contexte des technologies de l’information. Les pratiques commerciales observées sont peu connues et l’un des objectifs est d’informer le lecteur quant au fonctionnement de ces pratiques. Dans le but de bien situer les enjeux, cet essai discutera d’abord des concepts théoriques de vie privée et de protection des renseignements personnels. Une fois ce survol tracé, les pratiques de « data brokerage », de « cloud computing » et des solutions « analytics » seront décortiquées. Au cours de cette description, les enjeux juridiques soulevés par chaque aspect de la pratique en question seront étudiés. Enfin, le dernier chapitre de cet essai sera réservé à deux enjeux, soit le rôle du consentement et la sécurité des données, qui ne relèvent pas d’une pratique commerciale spécifique, mais qui sont avant tout des conséquences directes de l’évolution des technologies de l’information.
Resumo:
The increasing needs for computational power in areas such as weather simulation, genomics or Internet applications have led to sharing of geographically distributed and heterogeneous resources from commercial data centers and scientific institutions. Research in the areas of utility, grid and cloud computing, together with improvements in network and hardware virtualization has resulted in methods to locate and use resources to rapidly provision virtual environments in a flexible manner, while lowering costs for consumers and providers. However, there is still a lack of methodologies to enable efficient and seamless sharing of resources among institutions. In this work, we concentrate in the problem of executing parallel scientific applications across distributed resources belonging to separate organizations. Our approach can be divided in three main points. First, we define and implement an interoperable grid protocol to distribute job workloads among partners with different middleware and execution resources. Second, we research and implement different policies for virtual resource provisioning and job-to-resource allocation, taking advantage of their cooperation to improve execution cost and performance. Third, we explore the consequences of on-demand provisioning and allocation in the problem of site-selection for the execution of parallel workloads, and propose new strategies to reduce job slowdown and overall cost.
Resumo:
Cet essai est présenté en tant que mémoire de maîtrise dans le cadre du programme de droit des technologies de l’information. Ce mémoire traite de différents modèles d’affaires qui ont pour caractéristique commune de commercialiser les données dans le contexte des technologies de l’information. Les pratiques commerciales observées sont peu connues et l’un des objectifs est d’informer le lecteur quant au fonctionnement de ces pratiques. Dans le but de bien situer les enjeux, cet essai discutera d’abord des concepts théoriques de vie privée et de protection des renseignements personnels. Une fois ce survol tracé, les pratiques de « data brokerage », de « cloud computing » et des solutions « analytics » seront décortiquées. Au cours de cette description, les enjeux juridiques soulevés par chaque aspect de la pratique en question seront étudiés. Enfin, le dernier chapitre de cet essai sera réservé à deux enjeux, soit le rôle du consentement et la sécurité des données, qui ne relèvent pas d’une pratique commerciale spécifique, mais qui sont avant tout des conséquences directes de l’évolution des technologies de l’information.
Resumo:
The popularity of cloud computing has led to a dramatic increase in the number of data centers in the world. The ever-increasing computational demands along with the slowdown in technology scaling has ushered an era of power-limited servers. Techniques such as near-threshold computing (NTC) can be used to improve energy efficiency in the post-Dennard scaling era. This paper describes an architecture based on the FD-SOI process technology for near-threshold operation in servers. Our work explores the trade-offs in energy and performance when running a wide range of applications found in private and public clouds, ranging from traditional scale-out applications, such as web search or media streaming, to virtualized banking applications. Our study demonstrates the benefits of near-threshold operation and proposes several directions to synergistically increase the energy proportionality of a near-threshold server.
Resumo:
Objectives: To discuss how current research in the area of smart homes and ambient assisted living will be influenced by the use of big data. Methods: A scoping review of literature published in scientific journals and conference proceedings was performed, focusing on smart homes, ambient assisted living and big data over the years 2011-2014. Results: The health and social care market has lagged behind other markets when it comes to the introduction of innovative IT solutions and the market faces a number of challenges as the use of big data will increase. First, there is a need for a sustainable and trustful information chain where the needed information can be transferred from all producers to all consumers in a structured way. Second, there is a need for big data strategies and policies to manage the new situation where information is handled and transferred independently of the place of the expertise. Finally, there is a possibility to develop new and innovative business models for a market that supports cloud computing, social media, crowdsourcing etc. Conclusions: The interdisciplinary area of big data, smart homes and ambient assisted living is no longer only of interest for IT developers, it is also of interest for decision makers as customers make more informed choices among today's services. In the future it will be of importance to make information usable for managers and improve decision making, tailor smart home services based on big data, develop new business models, increase competition and identify policies to ensure privacy, security and liability.
Resumo:
The 10th European Conference on Information Systems Management is being held at The University of Evora, Portugal on the 8 /9 September 2016. The Conference Chair is Paulo Silva and the Programme Chairs are Prof. Rui Quaresma and Prof. António Guerreiro. ECISM provides an opportunity for individuals researching and working in the broad field of information systems management, including IT evaluation to come together to exchange ideas and discuss current research in the field. This has developed into a particularly important forum for the present era, where the modern challenges of managing information and evaluating the effectiveness of related technologies are constantly evolving in the world of Big Data and Cloud Computing. We hope that this year’s conference will provide you with plenty of opportunities to share your expertise with colleagues from around the world. The keynote speakers for the Conference are Carlos Zorrinho from the Portuguese Delegation and Isabel Ramos from University of Minho, Portugal. ECISM 2016 received an initial submission of 84 abstracts. After the double blind peer review process 25 aca demic papers, 7 PhD research papers, 3 Masters research paper and 5 work in progress papers have been ac cepted for publication in these Conference Proceedings. These papers represent research from around the world, including Belgium, Brazil, China, Czech Republic, Kazakhstan, Malaysia, New Zealand, Norway, Oman, Poland, Portugal, South Africa, Sweden, The Netherlands, UK and Vietnam.
Resumo:
This paper presents the study and experimental tests for the viability analysis of using multiple wireless technologies in urban traffic light controllers in a Smart City environment. Communication drivers, different types of antennas, data acquisition methods and data processing for monitoring the network are presented. The sensors and actuators modules are connected in a local area network through two distinct low power wireless networks using both 868 MHz and 2.4 GHz frequency bands. All data communications using 868 MHz go through a Moteino. Various tests are made to assess the most advantageous features of each communication type. The experimental results show better range for 868 MHz solutions, whereas the 2.4 GHz presents the advantage of self-regenerating the network and mesh. The different pros and cons of both communication methods are presented.
Resumo:
With the development of wearable and mobile computing technology, more and more people start using sleep-tracking tools to collect personal sleep data on a daily basis aiming at understanding and improving their sleep. While sleep quality is influenced by many factors in a person’s lifestyle context, such as exercise, diet and steps walked, existing tools simply visualize sleep data per se on a dashboard rather than analyse those data in combination with contextual factors. Hence many people find it difficult to make sense of their sleep data. In this paper, we present a cloud-based intelligent computing system named SleepExplorer that incorporates sleep domain knowledge and association rule mining for automated analysis on personal sleep data in light of contextual factors. Experiments show that the same contextual factors can play a distinct role in sleep of different people, and SleepExplorer could help users discover factors that are most relevant to their personal sleep.
Resumo:
As computational models in fields such as medicine and engineering get more refined, resource requirements are increased. In a first instance, these needs have been satisfied using parallel computing and HPC clusters. However, such systems are often costly and lack flexibility. HPC users are therefore tempted to move to elastic HPC using cloud services. One difficulty in making this transition is that HPC and cloud systems are different, and performance may vary. The purpose of this study is to evaluate cloud services as a means to minimise both cost and computation time for large-scale simulations, and to identify which system properties have the most significant impact on performance. Our simulation results show that, while the performance of Virtual CPU (VCPU) is satisfactory, network throughput may lead to difficulties.
Resumo:
We introduce a new parallel pattern derived from a specific application domain and show how it turns out to have application beyond its domain of origin. The pool evolution pattern models the parallel evolution of a population subject to mutations and evolving in such a way that a given fitness function is optimized. The pattern has been demonstrated to be suitable for capturing and modeling the parallel patterns underpinning various evolutionary algorithms, as well as other parallel patterns typical of symbolic computation. In this paper we introduce the pattern, we discuss its implementation on modern multi/many core architectures and finally present experimental results obtained with FastFlow and Erlang implementations to assess its feasibility and scalability.
Resumo:
We describe a system for performing SLA-driven management and orchestration of distributed infrastructures composed of services supporting mobile computing use cases. In particular, we focus on a Follow-Me Cloud scenario in which we consider mobile users accessing cloud-enable services. We combine a SLA-driven approach to infrastructure optimization, with forecast-based performance degradation preventive actions and pattern detection for supporting mobile cloud infrastructure management. We present our system's information model and architecture including the algorithmic support and the proposed scenarios for system evaluation.
Resumo:
The use of 3D data in mobile robotics applications provides valuable information about the robot’s environment but usually the huge amount of 3D information is unmanageable by the robot storage and computing capabilities. A data compression is necessary to store and manage this information but preserving as much information as possible. In this paper, we propose a 3D lossy compression system based on plane extraction which represent the points of each scene plane as a Delaunay triangulation and a set of points/area information. The compression system can be customized to achieve different data compression or accuracy ratios. It also supports a color segmentation stage to preserve original scene color information and provides a realistic scene reconstruction. The design of the method provides a fast scene reconstruction useful for further visualization or processing tasks.
Resumo:
With advances in science and technology, computing and business intelligence (BI) systems are steadily becoming more complex with an increasing variety of heterogeneous software and hardware components. They are thus becoming progressively more difficult to monitor, manage and maintain. Traditional approaches to system management have largely relied on domain experts through a knowledge acquisition process that translates domain knowledge into operating rules and policies. It is widely acknowledged as a cumbersome, labor intensive, and error prone process, besides being difficult to keep up with the rapidly changing environments. In addition, many traditional business systems deliver primarily pre-defined historic metrics for a long-term strategic or mid-term tactical analysis, and lack the necessary flexibility to support evolving metrics or data collection for real-time operational analysis. There is thus a pressing need for automatic and efficient approaches to monitor and manage complex computing and BI systems. To realize the goal of autonomic management and enable self-management capabilities, we propose to mine system historical log data generated by computing and BI systems, and automatically extract actionable patterns from this data. This dissertation focuses on the development of different data mining techniques to extract actionable patterns from various types of log data in computing and BI systems. Four key problems—Log data categorization and event summarization, Leading indicator identification , Pattern prioritization by exploring the link structures , and Tensor model for three-way log data are studied. Case studies and comprehensive experiments on real application scenarios and datasets are conducted to show the effectiveness of our proposed approaches.
Resumo:
Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.