991 resultados para Cisteína protease
Resumo:
Dengue virus is an important patogen that causes Dengue desease in all world, and belongs to Flavivirus gender. The virus consists of enveloped RNA with a single strand positive sense, 11Kb genome. The RNA is translated into a polyprotein precursor, wich is cleaved into 3 structural proteins (C, prM e E) and 7 non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B e NS5). The NS3 is a multifunctional protein, that besides to promote the polyprotein precursor cleavage, also have NTPase, helicase and RTPase activity. The NS3 needs a hydrophilic segment of 40 residues from the transmembrane NS2B protein (who acts like cofator) to realize this functions. Actually, there's no vacines available on the market, and the treatment are just symptomatic. The tetrapeptide inhibitor Bz-Nle-Lys-Arg-Arg-H (Ki de 5,8-7,0 M) was showed as a potent inhibitor μ for NS3prot in Dengue virus. That is a inteligent alternative to treat the dengue desease. The present work aimed analyse the interactions of the ligand bounded to the activity site to provid a clear and depth vision of that interaction. For this purpouse, it was conducted an in silico study, by using quantum mechanical calculations based on Density Functional Theory (DFT), with Generalized Gradient approximation (GGA) to describe the effects of exchange and correlation. The interaction energy of each amino acid belonging to the binding site to the ligand was calculated the using the method of molecular fragmentation with conjugated caps (MFCC). Besides energy, we calculated the distances, types of molecular interactions and atomic groups involved. The theoretical models used were satisfactory and show a more accurate description when the dielectric constant = 20 ε and 80 was used. The results demonstrate that the interaction energy of the system reached convergence at 13.5 A. Within a radius of 13,5A the most important residues were identified. Met49, Met84 and Asp81 perform interactions of hydrogen with the ligant. The Asp79 and Asp75 residues present high energy of attraction. Arg54, Arg85 and Lys 131 perform hydrogen interactions with the ligand, however, appear in BIRD graph having high repulsion energy with the inhibitor. The data also emphasizes the importance of residue Tyr161 and the involvement of the catalytic triad composed by Asp75, His51 and Ser135
Resumo:
Amphibian skin secretions contain biologically-active compounds, such as anti-microbial peptides and trypsin inhibitors, which are used by biomedical researchers as a source of potential novel drug leads or pharmacological agents. Here, we report the application of a recently developed technique within our laboratory to “shotgun” clone the cDNAs encoding two novel but structurally-related peptides from the lyophilized skin secretions of one species of European frog, Rana esculenta and one species of Chinese frog, Odorrana schmackeri. Bioanalysis of the peptides established the structure of a 17-mer with an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 17, which is a canonical Kunitz-type protease inhibitor motif (-CKAAFC-). Due to the presence of this structural attribute, these peptides were named kunitzin-RE (AAKIILNPKFRCKAAFC) and kunitzin-OS (AVNIPFKVHLRCKAAFC). Synthetic replicates of these two novel peptides were found to display a potent inhibitory activity against Escherichia coli but were ineffective at inhibiting the growth of Staphylococcus aureus and Candida albicans at concentrations up to 160 μM, and both showed little haemolytic activity at concentrations up to 120 μM. Subsequently, kunitzin-RE and kunitzin-OS were found to be a potent inhibitor of trypsin with a Ki of 5.56 μM and 7.56 μM that represent prototypes of a novel class of highly-attenuated amphibian skin protease inhibitor. Substitution of Lys-13, the predicted residue occupying the P1 position within the inhibitory loop, with Phe (F) resulted in decrease in trypsin inhibitor effectiveness and antimicrobial activity against Esherichia coli, but exhibits a potential inhibition activity against chymotrypsin.
Resumo:
The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic.
Resumo:
BACKGROUND: Schistosomes are able to survive for prolonged periods in the blood system, despite continuous contact with coagulatory factors and mediators of the host immune system. Protease inhibitors likely play a critical role in host immune modulation thereby promoting parasite survival in this extremely hostile environment. Even though Kunitz type serine protease inhibitors have been shown to play important physiological functions in a range of organisms these proteins are less well characterised in parasitic helminths.
METHODS: We have cloned one gene sequence from S. mansoni, Smp_147730 (SmKI-1) which is coded for single domain Kunitz type protease inhibitor, E. coli-expressed and purified. Immunolocalisation and western blotting was carried out using affinity purified polyclonal anti-SmKI-1 murine antibodies to determine SmKI-1 expression in the parasite. Protease inhibitor assays and coagulation assays were performed to evaluate the functional roles of SmKI-1.
RESULTS: SmKI-1 is localised in the tegument of adult worms and the sub-shell region of eggs. Furthermore, this Kunitz protein is secreted into the host in the ES products of the adult worm. Recombinant SmKI-1 inhibited mammalian trypsin, chymotrypsin, neutrophil elastase, FXa and plasma kallikrein with IC50 values of 35 nM, 61 nM, 56 nM, 142 nM and 112 nM, respectively. However, no inhibition was detected for pancreatic elastase or cathepsin G. SmKI-1 (4 μM) delayed blood clot formation, reflected in an approximately three fold increase in activated partial thromboplastin time and prothrombin time.
CONCLUSIONS: We have functionally characterised the first Kunitz type protease inhibitor (SmKI-1) from S. mansoni and show that it has anti-inflammatory and anti-coagulant properties. SmKI-1 is one of a number of putative Kunitz proteins in schistosomes that have presumably evolved as an adaptation to protect these parasites from the defence mechanisms of their mammalian hosts. As such they may represent novel vaccine candidates and/or drug targets for schistosomiasis control.
Resumo:
BACKGROUND: Proteins belonging to the serine protease inhibitor (serpin) superfamily play essential physiological roles in many organisms. In pathogens, serpins are thought to have evolved specifically to limit host immune responses by interfering with the host immune-stimulatory signals. Serpins are less well characterised in parasitic helminths, although some are thought to be involved in mechanisms associated with host immune modulation. In this study, we cloned and partially characterised a secretory serpin from Schistosoma japonicum termed SjB6, these findings provide the basis for possible functional roles.
METHODS: SjB6 gene was identified through database mining of our previously published microarray data, cloned and detailed sequence and structural analysis and comparative modelling carried out using various bioinformatics and proteomics tools. Gene transcriptional profiling was determined by real-time PCR and the expression of native protein determined by immunoblotting. An immunological profile of the recombinant protein produced in insect cells was determined by ELISA.
RESULTS: SjB6 contains an open reading frame of 1160 base pairs that encodes a protein of 387 amino acid residues. Detailed sequence analysis, comparative modelling and structural-based alignment revealed that SjB6 contains the essential structural motifs and consensus secondary structures typical of inhibitory serpins. The presence of an N-terminal signal sequence indicated that SjB6 is a secretory protein. Real-time data indicated that SjB6 is expressed exclusively in the intra-mammalian stage of the parasite life cycle with its highest expression levels in the egg stage (p < 0.0001). The native protein is approximately 60 kDa in size and recombinant SjB6 (rSjB6) was recognised strongly by sera from rats experimentally infected with S. japonicum.
CONCLUSIONS: The significantly high expression of SjB6 in schistosome eggs, when compared to other life cycle stages, suggests a possible association with disease pathology, while the strong reactivity of sera from experimentally infected rats against rSjB6 suggests that native SjB6 is released into host tissue and induces an immune response. This study presents a comprehensive demonstration of sequence and structural-based analysis of a secretory serpin from a trematode and suggests SjB6 may be associated with important functional roles in S. japonicum, particularly in parasite modulation of the host microenvironment.
Resumo:
A mucosa intestinal é a primeira barreira biológica encontrada pelas micotoxinas presentes nos alimentos, sendo a patulina, uma micotoxina produzida por fungos do género Penicillium spp., uma preocupação particular atendendo a que a exposição humana a esta micotoxina pode conduzir a efeitos imunológicos, neurológicos e gastrointestinais. Considerando estes efeitos para a saúde, o presente estudo tem como objetivos a avaliação do efeito tóxico da exposição intestinal a patulina, bem como a determinação do potencial efeito protetor da coadministração de patulina e cisteína na membrana intestinal, utilizando para o efeito células Caco-2. A integridade da membrana intestinal foi determinada pela medição da resistência elétrica transepitelial (TEER). Os resultados evidenciaram um decréscimo acentuado nos valores de TEER após 24 horas de exposição celular a 95 μM de patulina. Para as concentrações mais reduzidas verificou-se uma redução máxima inferior a 25% após 24 horas de exposição. A coadministração de patulina (95 μM) e cisteína (40 μM) revelou um decréscimo nos valores de TEER. O tratamento com cisteína em concentrações superiores ( 400 μM) revelou efeito protetor da membrana intestinal, tendo em conta os valores de TEER. Estes resultados contribuem para uma avaliação do risco mais precisa associada à exposição a contaminantes alimentares.
Resumo:
Chloroplast protease AtDeg2 (an ATP-independent serine endopeptidase) is cytosolically synthesized as a precursor, which is imported into the chloroplast stroma and deprived of its transit peptide. Then the mature protein undergoes routing to its functional location at the stromal side of thylakoid membrane. In its linear structure AtDeg2 molecule contains the protease domain with catalytic triad (HDS) and two PDZ domains (PDZ1 and PDZ2). In vivo AtDeg2 most probably exists as a supposedly inactive haxamer, which may change its oligomeric stage to form active 12-mer, or 24-mer. AtDeg2 has recently been demonstrated to exhibit dual protease/chaperone function. This review is focused on the current awareness with regard to AtDeg2 structure and functional significance.
Resumo:
International audience
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, 2010.
Resumo:
Tese de Doutoramento em Ciências Veterinárias na Especialidade de Ciências Biológicas e Biomédicas
Resumo:
The m-AAA protease is a hexameric complex involved in processing of specific substrates and turnover of misfolded polypeptides in the mitochondrial inner membrane. In humans, the m-AAA protease is composed of AFG3L2 and paraplegin. Mutations in AFG3L2 have been implicated in dominant spinocerebellar ataxia (SCA28) and recessive spastic ataxia-neuropathy syndrome (SPAX5). Mutations of SPG7, encoding paraplegin, are linked to hereditary spastic paraplegia. In the mouse, a third subunit AFG3L1 is expressed. Various mouse models recapitulate the phenotype of these neurodegenerative disorders, however, the pathogenic mechanism of neurodegeneration is not completely understood. Here, we studied several mouse models and focused on cell-autonomous role of the m-AAA protease in neurons and myelinating cells. We show that lack of Afg3l2 triggers mitochondrial fragmentation and swelling, tau hyperphosphorylation and pathology in Afg3l2 full-body and forebrain neuron-specific knockout mice. Moreover, deletion of Afg3l2 in adult myelinating cells causes early-onset mitochondrial abnormalities as in the neurons, but the survival of these cells is not affected, which is a contrast to early neuronal death. Despite the fact that myelinating cells have been previously shown to survive respiratory deficiency by glycolysis, total ablation of the m-AAA protease by deleting Afg3l2 in an Afg3l1 null background (DKO), leads to myelinating cell demise and subsequently progressive axonal demyelination. Interestingly, DKO mice show premature hair greying due to loss of melanoblasts. Together, our data demonstrate cell-autonomous survival thresholds to m-AAA protease deficiency, and an essential role of the m-AAA protease to prevent cell death independent from mitochondrial dynamics and the oxidative capacity of the cell. Thus, our findings provide novel insights to the pathogenesis of diseases linked to m-AAA protease deficiency, and also establish valuable mitochondrial dysfunctional mouse models to study other neurodegenerative diseases, such as tauopathies and demyelinating diseases.
Resumo:
Candida biofilms on denture surfaces are substantially reduced after a single immersion in denture cleanser. However, whether this effect is maintained when dentures are immersed in cleanser daily is unclear. The purpose of this study was to evaluate the effect of the daily use of enzymatic cleanser on Candida albicans biofilms on denture base materials. The surfaces of polyamide and poly(methyl methacrylate) resin specimens (n=54) were standardized and divided into 12 groups (n=9 per group), according to study factors (material type, treatment type, and periods of treatment). Candida albicans biofilms were allowed to form over 72 hours, after which the specimens were treated with enzymatic cleanser once daily for 1, 4, or 7 days. Thereafter, residual biofilm was ultrasonically removed and analyzed for viable cells (colony forming units/mm(2)) and enzymatic activity (phospholipase, aspartyl-protease, and hemolysin). Factors that interfered with the response variables were analyzed by 3-way ANOVA with the Holm-Sidak multiple comparison method (α=.05). Polyamide resin presented more viable cells of Candida albicans (P<.001) for both the evaluated treatment types and periods. Although enzymatic cleansing significantly (P<.001) reduced viable cells, daily use did not maintain this reduction (P<.001). Phospholipase activity significantly increased with time (P<.001) for both materials and treatments. However, poly(methyl methacrylate) based resin (P<.001) and enzymatic cleansing treatment (P<.001) contributed to lower phospholipase activity. Aspartyl-protease and hemolysin activities were not influenced by study factors (P>.05). Although daily use of an enzymatic cleanser reduced the number of viable cells and phospholipase activity, this treatment was not effective against residual biofilm over time.
Resumo:
Dipeptide syntheses starting from Ac-L-Tyr-OEt or Z-L-X-OMe (X: Asp, Tyr, Phe, Arg, Lys or Thr) and glycine amide in biphasic reaction media were achieved using two commercially available porcine pancreatic lipase (PPL) preparations (crude (cPPL) and purified PPL (pPPL)). Under the mild conditions employed, α-chymotrypsin, a pancreatic protease that also presents esterase activity, catalyzed Ac-L-Tyr-Gly-NH2 synthesis with high productivity. Product hydrolysis also occurred in most of the syntheses studied. Polyacrylamide gel electrophoresis, enzymatic assays employing specific chromogenic substrates and size-exclusion chromatography revealed that cPPL and pPPL contain contaminant proteases and, therefore, exhibit esterase and amidase activities. Overall, these data indicate that those contaminants may be the main catalysts of peptide bond synthesis when Nα-blocked-L-amino acid esters and the commercial PPL preparations are used. On the other hand, such data do not contest the possibility of using such enzyme preparations as an inexpensive source of catalysts for dipeptide synthesis under soft conditions.