823 resultados para Chronic respiratory failure
Resumo:
OBJECTIVES: The aim of this manuscript is to describe the first year of our experience using extracorporeal membrane oxygenation support. METHODS: Ten patients with severe refractory hypoxemia, two with associated severe cardiovascular failure, were supported using venous-venous extracorporeal membrane oxygenation (eight patients) or veno-arterial extracorporeal membrane oxygenation (two patients). RESULTS: The median age of the patients was 31 yr (range 14-71 yr). Their median simplified acute physiological score three (SAPS3) was 94 (range 84-118), and they had a median expected mortality of 95% (range 87-99%). Community-acquired pneumonia was the most common diagnosis (50%), followed by P. jiroveci pneumonia in two patients with AIDS (20%). Six patients were transferred from other ICUs during extracorporeal membrane oxygenation support, three of whom were transferred between ICUs within the hospital (30%), two by ambulance (20%) and one by helicopter (10%). Only one patient (10%) was anticoagulated with heparin throughout extracorporeal membrane oxygenation support. Eighty percent of patients required continuous venous-venous hemofiltration. Three patients (30%) developed persistent hypoxemia, which was corrected using higher positive end-expiratory pressure, higher inspired oxygen fractions, recruitment maneuvers, and nitric oxide. The median time on extracorporeal membrane oxygenation support was five (range 3-32) days. The median length of the hospital stay was 31 (range 3-97) days. Four patients (40%) survived to 60 days, and they were free from renal replacement therapy and oxygen support. CONCLUSIONS: The use of extracorporeal membrane oxygenation support in severely ill patients is possible in the presence of a structured team. Efforts must be made to recognize the necessity of extracorporeal respiratory support at an early stage and to prompt activation of the extracorporeal membrane oxygenation team.
Resumo:
We compared outcomes of alveolar hemorrhage (AH) in juvenile (JSLE) and adult onset SLE (ASLE). From 263 JSLE and 1522 ASLE, the AH occurred in 13 (4.9%) and 15 (1.0%) patients, respectively (p < .001). Both groups had comparable disease duration (2.6 +/- 3.0 vs. 5.6 +/- 7.0 years, p = .151) and median SLEDAI scores [17.5 (2 to 32) vs. 17.5 (3 to 28), p = 1.000]. At AH onset, a higher frequency of JSLE were already on a high prednisone dose ( > 0.5 mg/kg/day) compared to ASLE (54% vs. 15%, p = .042). The mean drop of hemoglobin was significantly lower in JSLE (2.9 +/- 0.9 vs. 5.5 +/- 2.9 g/dL, p = .006). Although treatments with methylprednisolone, plasmapheresis, intravenous immunoglobulin and cyclophosphamide were similar in both groups (p > .050), regarding outcomes, there was a trend in high frequency of mechanical ventilation use (85% vs. 47%, p = .055) and also significant mortality (69% vs. 13%, p = .006) in JSLE compared to ASLE. The sepsis frequency was comparable in both groups (50% vs. 27%, p = .433). We have identified that AH in JSLE has a worse outcome most likely related to respiratory failure. The AH onset in JSLE already treated with high-dose steroids raises the concern of inadequate response to this treatment and reinforces the recommendation of early aggressive alternative therapies in this group of patients. Lupus (2012) 21, 872-877.
Resumo:
Objective: In chronic renal failure patients under hemodialysis (HD) treatment, the availability of simple, safe, and effective tools to assess body composition enables evaluation of body composition accurately, in spite of changes in body fluids that occur in dialysis therapy, thus contributing to planning and monitoring of nutritional treatment. We evaluated the performance of bioelectrical impedance analysis (BIA) and the skinfold thickness sum (SKF) to assess fat mass (FM) in chronic renal failure patients before (BHD) and after (AHD) HD, using air displacement plethysmography (ADP) as the standard method. Design: This single-center cross-sectional trial involved comparing the FM of 60 HD patients estimated BHD and AHD by BIA (multifrequential; 29 women, 31 men) and by SKF with those estimated by the reference method, ADP. Body fat-free mass (FFM) was also obtained by subtracting the total body fat from the individual total weight. Results: Mean estimated FM (kg [%]) observed by ADP BHD was 17.95 +/- 0.99 kg (30.11% +/- 1.30%), with a 95% confidence interval (CI) of 16.00 to 19.90 (27.56 to 32.66); mean estimated FM observed AHD was 17.92 +/- 1.11 kg (30.04% +/- 1.40%), with a 95% CI of 15.74 to 20.10 (27.28 to 32.79). Neither study period showed a difference in FM and FFM (for both kg and %) estimates by the SKF method when compared with ADP; however, the BIA underestimated the FM and overestimated the FFM (for both kg and %) when compared with ADP. Conclusion: The SKF, but not the BIA, method showed results similar to ADP and can be considered adequate for FM evaluation in HD patients. (C) 2012 by the National Kidney Foundation, Inc. All rights reserved.
Resumo:
Background: Large amounts of reactive oxygen species are produced in hemodialysis (HD) patients, and, at higher concentrations, reactive oxygen species are thought to be involved in the pathogenesis of cardiovascular disease. It has been proposed that selenium (Se) may exert an antiatherogenic influence by reducing oxidative stress. The richest known food source of Se is the Brazil nut (Bertholletia excelsa, family Lecythidaceae), found in the Amazon region. Objective: The objective of this work was to determine if Se plasma levels in HD patients submitted to a program of supplementation during 3 months with 1 Brazil nut by day could be sustained after 12 months. Methods: A total of 21 HD patients (54.2 +/- 15.2 years old; average time on dialysis, 82.3 +/- 51.6 months; body mass index, 24.4 +/- 3.8 kg/m(2)) from the RenalCor Clinic in Rio de Janeiro, Brazil, were followed up 12 months after the supplementation study ended. The Se plasma levels were determined by atomic absorption spectrophotometry with hydride generation. Results: The Se Plasma levels (17.3 +/- 19.9 mg/L) were below the normal range (60 to 120 mu g/L) before nut supplementation, and after 3 months of supplementation, the levels increased to 106.8 +/- 50.3 mu g/L (P < .0001). Twelve months after supplementation, the plasma Se levels decreased to 31.9 +/- 14.8 mu g/L (P < .0001). Conclusions: The data showed that these patients were Se deficient and that the consumption of Brazil nut was effective to increase the Se parameters of nutritional status. Se levels 12 months after the supplementation period were not as low as presupplementation levels but yet significantly lower, and we needed to motivate patients to adopt different dietary intake patterns. (C) 2012 by the National Kidney Foundation, Inc. All rights reserved.
Resumo:
OBJECTIVES: A number of complications exist with invasive mechanical ventilation and with the use of and withdrawal from prolonged ventilator support. The use of protocols that enable the systematic identification of patients eligible for an interruption in mechanical ventilation can significantly reduce the number of complications. This study describes the application of a weaning protocol and its results. METHODS: Patients who required invasive mechanical ventilation for more than 24 hours were included and assessed daily to identify individuals who were ready to begin the weaning process. RESULTS: We studied 252 patients with a median mechanical ventilation time of 3.7 days (interquartile range of 1 to 23 days), a rapid shallow breathing index value of 48 (median), a maximum inspiratory pressure of 40 cmH2O, and a maximum expiratory pressure of 40 cm H2O (median). Of these 252 patients, 32 (12.7%) had to be reintubated, which represented weaning failure. Noninvasive ventilation was used postextubation in 170 (73%) patients, and 15% of these patients were reintubated, which also represented weaning failure. The mortality rate of the 252 patients studied was 8.73% (22), and there was no significant difference in the age, gender, mechanical ventilation time, and maximum inspiratory pressure between the survivors and nonsurvivors. CONCLUSIONS: The use of a specific weaning protocol resulted in a lower mechanical ventilation time and an acceptable reintubation rate. This protocol can be used as a comparative index in hospitals to improve the weaning system, its monitoring and the informative reporting of patient outcomes and may represent a future tool and source of quality markers for patient care.
Resumo:
Background: Zinc-alpha 2-glycoprotein (ZAG) is a lipid mobilizing factor. Its anti-inflammatory action and expression pattern suggest that ZAG could act by protecting against the obesity-associated disorders. In hemodialysis (HD) patients, ZAG levels were described to be elevated but its effects on markers of inflammation and LDL oxidation are still unclear. We investigated the relationship between ZAG and markers of systemic inflammation and LDL atherogenic modification profile in HD patients. Methods: Forty-three patients regularly on HD were studied and compared to 20 healthy subjects. Plasma ZAG, adiponectin, electronegative LDL [LDL(-)], an atherosclerotic negatively charged LDL subtraction, and anti-LDL(-) autoantibodies levels were measured by ELISA. Markers of inflammation and atherogenic cell recruitment (TNF-alpha, interleukin-6, VCAM-1, ICAM-1, MCP-1 and PAI-1) were also determined. Results: Inflammatory markers and atherogenic cell recruitment were higher in HD patients when compared to healthy subjects. ZAG levels were also higher in HD patients (151.5 +/- 50.1 mg/l vs 54.6 +/- 23.0 mg/l; p<0.0001) and its levels were negatively correlated with TNF-alpha (r= -0.39; p = 0.001) and VCAM-1 (r= -0.52; p<0.0001) and, positively correlated with anti-LDL(-) autoantibodies (r = 038; p = 0.016). On multivariate analyses, plasma ZAG levels were independently associated with VCAM-1 (p = 0.01). Conclusion: ZAG is inversely associated with markers of pro-atherogenic factors linked to systemic inflammation and oxidative stress. Thus, this adipokine may constitute a novel marker of a favorable metabolic profile regarding cardiovascular risk factors in HD population. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background and objective: Malnutrition is prevalent in hospitalized patients and causes systemic damage including effects on the respiratory and immune systems, as well as predisposing to infection and increasing postoperative complications and mortality. This study aimed to assess the impact of malnutrition on the rate of postoperative pulmonary complications, respiratory muscle strength and chest wall expansion in patients undergoing elective upper abdominal surgery. Methods: Seventy-five consecutive candidates for upper abdominal surgery (39 in the malnourished group (MNG) and 36 in the control group (CG)) were enrolled in this prospective controlled cohort study. All patients were evaluated for nutritional status, respiratory muscle strength, chest wall expansion and lung function before surgery. Postoperative pulmonary complications (pneumonia, tracheobronchitis, atelectasis and acute respiratory failure) before discharge from hospital were also evaluated. Results: The MNG showed expiratory muscle weakness (MNG 65 +/- 24 vs CG 82 +/- 22 cm H2O; P < 0.001) and decreased chest wall expansion (P < 0.001), whereas inspiratory muscle strength and lung function were preserved (P > 0.05). The MNG also had a higher incidence of postoperative pulmonary complications compared with the CG (31% and 11%, respectively; P = 0.05). In addition, expiratory muscle weakness was correlated with BMI in the MNG (r = 0.43; P < 0.01). The association between malnutrition and expiratory muscle weakness increased the likelihood of postoperative pulmonary complications after upper abdominal surgery (P = 0.02). Conclusions: These results show that malnutrition is associated with weakness of the expiratory muscles, decreased chest wall expansion and increased incidence of pulmonary complications in patients undergoing elective upper abdominal surgery.
Resumo:
Today it is known that severe burns can be accompanied by the phenomenon of vasoplegic syndrome (VS), which is manifested by persistent and diffuse vasodilation, hypotension and low vascular resistance, resulting in circulatory and respiratory failure. The decrease in systemic vascular resistance observed in VS is associated with excessive production of nitric oxide (NO). In the last 2 decades, studies have reported promising results from the administration of an NO competitor, methylene blue (MB), which is an inhibitor of the soluble guanylate cyclase (sGC), in the treatment of refractory cases of vasoplegia. This medical hypothesis rationale is focused on the tripod of burns/vasoplegia catecholamine resistant/methylene blue. This article has 3 main objectives: 1) to study the guanylate cyclase inhibition by MB in burns; 2) to suggest MB as a viable, safe and useful co-adjuvant therapeutic tool of fluid resuscitation, and; 3) to suggest MB as burns hypotensive vasoplegia amine-resistant treatment.
Resumo:
Background and objective: Field exercise tests have been increasingly used for pulmonary risk assessment. The 6-min walking distance (6MWD) is a field test commonly employed in clinical practice; however, there is limited evidence supporting its use as a risk assessment method in abdominal surgery. The aim was to assess if the 6MWD can predict the development of post-operative pulmonary complications (PPCs) in patients having upper abdominal surgery (UAS). Methods: This prospective cohort study included 137 consecutive subjects undergoing elective UAS. Subjects performed the 6MWD on the day prior to surgery, and their performance were compared with predicted values of 6MWD (p6MWD) using a previously validated formula. PPCs (including pneumonia, tracheobronchitis, atelectasis with clinical repercussions, bronchospasm and acute respiratory failure) were assessed daily by a pulmonologist blinded to the 6MWD results. 6MWD and p6MWD were compared between subjects who developed PPC (PPC group) and those who did not (no PPC group) using Student's t-test. Results: Ten subjects experienced PPC (7.2%) and no significant difference was observed between the 6MWD obtained in the PPC group and no PPC group (466.0 +/- 97.0 m vs 485.3 +/- 107.1 m; P = 0.57, respectively). There was also no significant difference observed between groups for the p6MWD (100.7 +/- 29.1% vs 90.6 -/+ 20.9%; P > 0.05). Conclusions: The results of the present study suggest that the 6-min walking test is not a useful tool to identify subjects with increased risk of developing PPC following UAS.
Resumo:
Hyperprolactinemia is a common cause of menstrual disturbances affecting young women. There is a diversity of causes, from physiological, such as pregnancy, to pharmacological and pathological, such as hypothyroidism. Renal and hepatic failure, intercostal nerve stimulation by trauma or surgery, prolactinomas, other tumors in the hypothalamus-pituitary region, as well as macroprolactinemia can also be considered. Identifying the correct cause is important to establish the correct treatment. Should all these causes be ruled out and pituitary imaging revealed as negative, idiopathic hyperprolactinemia is therefore diagnosed. In symptomatic patients, treatment with dopaminergic agonists is indicated. As for the asymptomatic hyperprolactinemic individuals, macroprolactinemia should be screened, and once it is detected, there is no need for pituitary imaging study or for dopaminergic agonist use. (J Clin Endocrinol Metab 97: 2211-2216, 2012)
Resumo:
Atherosclerosis and vascular calcification (VC) progression in chronic kidney disease is favored by disturbances of mineral metabolism. We compared the effect of phosphate binder lanthanum (La) carbonate with sevelamer-HCl on atherosclerosis, VC and bone structure and function in mice with chronic renal failure (CRF). Apolipoprotein E-deficient (apoE(-/-)) mice were randomized to one non-CRF and three CRF groups, fed with standard diet (one non-CRF and one CRF) or diet supplemented with either 3% lanthanum carbonate (La3%) or 3% sevelamer-HCl (Sev3%). Both La3% and Sev3% supplemented CRF mice displayed a decrease of serum phosphorus, calcification at both intimal and medial aortic sites and atherosclerosis. This was associated with a reduction of plaque Type I collagen expression by both binders and of positive nitrotyrosine staining in response to sevelamer-HCl only. Increased mineral apposition and bone formation rates in unsupplemented CRF mice were reduced by Sev3% but not by La3%. The beneficial effects of La carbonate and sevelamer-HCl on the progression of VC and atherosclerosis in CRF mice could be mainly due to a decrease in phosphate retention and likewise a reduction of arterial Type I collagen expression. The effect of La carbonate differed from that of sevelamer-HCl in that it did not appear to exert its vascular effects via changes in oxidative stress or bone remodeling in the present model.
Resumo:
Food intake and nutritional status modify the physiological responses of the immune system to illness and infection and regulate the development of chronic inflammatory processes, such as kidney disease. Adipose tissue secretes immune-related proteins called adipokines that have pleiotropic effects on both the immune and neuroendocrine systems, linking metabolism and immune physiology. Leptin, an adipose tissue-derived adipokine, displays a variety of immune and physiological functions, and participates in several immune responses. Here, we review the current literature on the role of leptin in kidney diseases, linking adipose tissue and the immune system with kidney-related disorders. The modulation of this adipose hormone may have a major impact on the treatment of several immune- and metabolic-related kidney diseases.
Resumo:
In this minireview we describe the involvement of the atrial natriuretic peptide (ANP) in cardiovascular pathophysiology and exercise. The ANP has a broad homeostatic role and exerts complex effects on the cardio-circulatory hemodynamics, it is produced by the left atrium and has a key role in regulating sodium and water balance in mammals and humans. The dominant stimulus for its release is atrial wall tension, commonly caused by exercise. The ANP is involved in the process of lipolysis through a cGMP signaling pathway and, as a consequence, reducing blood pressure by decreasing the sensitivity of vascular smooth muscle to the action of vasoconstrictors and regulate fluid balance. The increase of this hormone is associated with better survival in patients with chronic heart failure (CHF). This minireview provides new evidence based on recent studies related to the beneficial effects of exercise in patients with cardiovascular disease, focusing on the ANP.
Resumo:
Primary lung lymphoma is a rare entity accounting for approximately 0.3% of all primary neoplasia of the lung and includes diffuse large B-cell lymphoma (DLBL) and lymphomatoid granulomatosis (LYG). Considering that clinical features may be similar, whereas epidemiology, morphology, and radiological features are different, the authors report a case of a middle-aged man who presented multiple pulmonary nodules in the lower lobes and groundglass opacities scattered bilaterally on computed tomography. Clinically, he presented a consumptive syndrome with respiratory failure and pleurisy, which progressed until death. The autopsy findings were consistent with lymphomatoid granulomatosis (LYG) grade 3/ diffuse large B-cell lymphoma (DLBL). The authors call attention to the difficulty of establishing an accurate diagnosis, mainly when the demonstration of EBV-infected atypical B-cells fails.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.