919 resultados para Chemistry, Physical.
Resumo:
The structure of 7,4`-dimethoxy-3`-acetylflavone (tithonin-Ac) has been determined by X-ray diffraction and its geometry is compared with optimized geometrical parameters obtained by means of density functional theory at the B3LYP/6-311++G(d,p) level of calculation. in addition, vertical ionization potential (IPv) and acidity for tithonin-Ac and two derivatives have been also calculated. Calculations of spin densities were also performed for the radical formed by the electron abstraction of other flavones. The unpaired electron is located on C3 carbon atom (21-25%). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work assesses the photocatalytic (TiO2/UV) degradation of a simulated acid dye bath (Yellow 3, Red 51, Blue 74, and auxiliary chemicals). Color and phytotoxicity removal were monitored by spectrophotometry and lettuce (Lactuca sativa) seeds as the test organism, respectively. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 240 minutes of irradiation, it was achieved 96% and 78% of color removal with photocatalysis and photolysis, respectively. 37% of mineralization occurred with photocatalysis only. The dye bath was rendered completely non-toxic after 60 minutes of photocatalytic treatment; the same result was only achieved with photolysis after 90 minutes. A kinetic model composed of two first-order in series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 0.062 min(-1) and the second k(2) = 0.0043 min(-1), approximately two times greater than the photolytic ones.
Resumo:
A relativistic four-component study was performed for the XeF(2) molecule by using the Dirac-Coulomb (DC) Hamiltonian and the relativistic adapted Gaussian basis sets (RAGBSs). The comparison of bond lengths obtained showed that relativistic effects on this property are small (increase of only 0.01 angstrom) while the contribution of electron correlation, obtained at CCSD(T) or CCSD-T levels, is more important (increase of 0.05 angstrom). Electron correlation is also dominant over relativistic effects for dissociation energies. Moreover, the correlation-relativity interaction is shown to be negligible for these properties. The electron affinity, the first ionization potential and the double ionization potential are obtained by means of the Fock-space coupled cluster (FSCC) method, resulting in DC-CCSD-T values of 0.3 eV, 12.5 eV and 32.3 eV, respectively. Vibrational frequencies and some anharmonicity constants were also calculated under the four-component formalism by means of standard perturbation equations. All these molecular properties are, in general, ill satisfactory agreement with available experimental results. Finally, a partition in terms of charge-charge flux-dipole flux (CCFDF) contributions derived by means of the quantum theory of atoms in molecules (QTAIM) in non-relativistic QCISD(FC)/3-21G* calculations was carried out for XeF(2) and KrF(2). This analysis showed that the most remarkable difference between both molecules lies on the charge flux contribution to the asymmetric stretching mode, which is negligible in KrF(2) but important in XeF(2). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The synthesis, spectra and X-ray crystal structure of N,N`-(+/-)-trans-1,2-cyclohexylenebis(3-ethoxysalicylideneamine) H-2(t-3-EtOsalchxn), a salen-type ligand, are reported. The Schiff base was characterized by elemental analysis, m.p., IR, electronic spectra, H-1 and C-13 NMR spectra. The spectra are discussed and compared with those of N,N`-(+/-)-trans-1,2-cyclohexylenebis(salicylideneamine), H-2(t-salchxn). The electronic and IR spectra were also resolved by deconvolution. The influence of the ethoxy group on the IR, electronic spectrum, H-1 and C-13 NMR spectra is discussed. Strong intramolecular forces are present as supported by the IR and H-1 NMR spectra and the X-ray crystal structure. An intermolecular hydrogen bond is observed and appears twice in a pair of molecules in the unit cell. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Julocrotine, N-(2,6-dioxo-l-phenethyl-piperidin-3-yl)-2-methyl-butyramide, is a potent antiproliferative agent against the promastigote and amastigote forms of Leishmania amazonensis (L.). In this work, the crystal structure of Julocrotine was solved by X-ray diffraction, and its geometrical parameters were compared with theoretical calculations at the B3LYP and HF level of theory. IR and NMR spectra also have been obtained and compared with theoretical calculations. IR absorptions calculated with the B3LYP level of theory employed together with the 6-311G+(d,p) basis set, are close to those observed experimentally. Theoretical NMR calculations show little deviation from experimental results. The results show that the theory is in accordance with the experimental data. (C) 2007 Wiley Periodicals, Inc.
Resumo:
The present work focuses on the interaction between the zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp). Electronic optical absorption, fluorescence emission and circular dichroism spectroscopy techniques, together with Gel-filtration chromatography, were used in order to evaluate the oligomeric dissociation as well as the autoxidation of HbGp as a function of the interaction with HPS. A peculiar behavior was observed for the HPS-HbGp interaction: a complex ferric species formation equilibrium was promoted, as a consequence of the autoxidation and oligomeric dissociation processes. At pH 7.0, HPS is more effective up to 1 mM while at pH 9.0 the surfactant effect is more intense above 1 mM. Furthermore, the interaction of HPS with HbGp was clearly less intense than the interaction of this hemoglobin with cationic (CTAC) and anionic (SDS) surfactants. Probably, this lower interaction with HPS is due to two factors: (i) the lower electrostatic attraction between the HPS surfactant and the protein surface ionic sites when compared to the electrostatic interaction between HbGp and cationic and anionic surfactants, and (ii) the low cmc of HPS, which probably reduces the interaction of the surfactant in the monomeric form with the protein. The present work emphasizes the importance of the electrostatic contribution in the interaction between ionic surfactants and HbGp. Furthermore, in the whole HPS concentration range used in this study, no folding and autoxidation decrease induced by this surfactant were observed. This is quite different from the literature data on the interaction between surfactants and tetrameric hemoglobins, that supports the occurrence of this behavior for the intracellular hemoglobins at low surfactant concentration range. Spectroscopic data are discussed and compared with the literature in order to improve the understanding of hemoglobin-surfactant interaction as well as the acid isoelectric point (pI) influence of the giant extracellular hemoglobins on their structure-activity relationship. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The simple halogenation of alkynes in conventional organic reactions gives a blend of cis and trans isomers. It is proposed then, a synthesis of stereospecific halogenation of alkynes in trans position, using palladacycle as intermediaries. The recrystallization of the compound obtained by bromination of 2-Styrylpyridine, with cyclepalladium intermediary results in a single crystal, which is subjected to X-ray diffraction. The crystal packing is established through weak interactions of three types. The first one is of the type pi x pi interactions, from symmetry operation, between the centroids. The second one is of the type C-X center dot center dot center dot pi interactions. And the last type is an anomalous intermolecular interaction between halogens, C-X center dot center dot center dot X-C, with bond distances smaller than the sum of the van der Waals radii. The conformation on the C=C bond is trans and the dihedral angle between the aromatic rings is (with esd approximate) 18.1(3)degrees. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Two hybrid materials based on dodecatungstophosphoric acid (HPW) dispersed in ormosils modified with 3-aminopropiltrietoxysilane (APTS) or with N-(3-(trimethoxysilyl)-propyl)-ethylene-diamine (TSPEN) show reversible photochromic response induced by irradiation in the 200-390 nm UV range. A set of solid-state nuclear magnetic resonance (NMR) techniques was used to analyze the structural properties of the main components of these hybrids (the HPW polyanion, the inorganic matrix, and the organic functionalities). For the ormosils, the use of (29)Si NMR, {(1)H}-(29)Si cross-polarization, and {(1)H}-(29)Si HETCOR revealed a homogeneous distribution of silicon species Q ``, T(2), and T(3) for the APTS hybrid, contrasting with the separation of T(3) species in the TSPEN hybrid. The combination of (31)P NMR, {(1)H}-(31)P cross-polarization and (31)P-{(1)H} spin-echo double resonance (SEDOR) revealed the dispersion of the HPW ions in the ormosil, occupying sites with a high number of close protons (>50). Differences in the molecular dynamics at room temperature, inferred from SEDOR experiments, indicate a state of restricted mobility of the HPW ion and the surrounding molecular groups in the TSPEN hybrid. This behavior is consistent with the presence of more amino groups in the TSPEN, acting as chelating groups to the HPW ion. This hybrid, with the strong chelate interaction of the diamine group, shows the most intense photochromic response, in agreement with the charge transfer models proposed to explain the photochromic effect. Electronic reflectance spectroscopy in irradiated samples revealed the presence of one-electron and two-electron reduced polyanions. The one-electron reduced species could be detected also by (31)P NMR spectroscopy immediately after UV irradiation.
Resumo:
The presence of paramagnetic species in the aqueous ring opening metathesis polymerizations of the exo,exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomer with RuCl(3) and K(2)[RuCl(5)H(2)O] compounds was studied using ESR techniques. It was observed that the intensities of the Ru(III) signals in the ESR spectra decrease on the time scale of the induction period so that the ROMP can take place. The intensity of the Ru(III) signal almost disappeared 50 min after reacting with K(2)[RuCl(5)H(2)O] and after 100 mm in the case of RuCl(3). Reactions of the cis-[Ru(NH(3))(4)(H(2)O)(2)](tfms)(3) and [Ru(NH(3))(5)H(2)O](tfms)(3) complexes with the monomer and different organic compounds representing the organic functions in the monomer (furan, norbornene, but-2-ene-1,4-diol and formic, acetic, oxalic and maleic acids) were also monitored by ESR and UV/vis spectra. It was deduced that the organic acids provide the disappearance of the Ru(III) signal. The proton NMR relaxation times of the residual water in D(2)O for reactions with oxalic acid suggested that the presence of paramagnetic ions in the solution decreases along with
Resumo:
The reactivity of the new complex [RuCl(2)(PPh(3))(2)(3,5-Me(2)piperidine)], complex 1, was investigated for ring opening metathesis polymerization (ROMP) of norbornene (NBE) and norbornadiene (NBD) in the presence of ethyl diazoacetate (EDA) in CHCl(3). The aim is to observe the combination of PPh(3) and an amine as ancillary ligands concerning the steric hindrance and the electronic perturbation in the properties of the N-bound site when replacing the amines. Thus, the results with 1 were compared to the results obtained when the amine is piperidine (complex 2). Reaction with 1 provides 70% yield of isolated polyNBE (M(n) =8.3 x 10(4) g/mol; PDI = 2.03), whereas 2 provides quantitative reaction (M(n) = 1.2 x 10(5) g/mol; PDI = 1.90) with [NBE]/[Ru] = 5000, [EDA]/[Ru] = 48 and 1.1 mu mol of Ru for 5 min at 25 degrees C. The resulting polymers showed c.a. 62% of trans-polyNBE, determined by (1)H NMR, and T(g) = 32 degrees C, determined by DSC and DMTA. For ROMP of NBD, 1 showed quantitative yield with PDI =2.62 when [NBD]/[Ru] = 5000 for 20 min at 25 degrees C, whereas the reaction with 2 reached 55% with PDI = 2.16 in the same conditions. It is concluded that the presence of the two methyl groups in the piperidine ring provides an increase in the induction period to produce the Ru-carbene species justifying better polyNBE results with 2, and a greater amine(sigma)-> Ru(pi)-> monomer synergism which contributed to the best activation of less tensioned olefin as NBD. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Four new diorganotin(IV) complexes have been prepared from R(2)SnCl(2) (R = Me, Ph) with the ligands 5-hydroxy-3-metyl-5-phenyl-1-(S-benzildithiocarbazate)-pyrazoline (H(2)L(1)) and 5-hydroxy-3-methyl-5-phenyl-1-(2-thiophenecarboxylic)-pyrazoline (H(2)L(2)). The complexes were characterized by elemental analysis, IR. (1)H (13)C, (119)Sn NMR and Mossbauer spectroscopes The complexes [Me(2)SnL(1)], [Ph(2)SnL(1)] and [Me(2)SnL(2)] were also studied by single crystal X-ray diffraction and the results showed that the Sn(IV) central atom of the complexes adopts a distorted trigonal bipyramidal (TBP) geometry with the N atom of the ONX-tridentate (X = O and S) ligand and two organic groups occupying equatorial sites. The C-Sn-C angles for [Me(2)Sn(L(1))] and [Ph(2)Sn(L(1))] were calculated using a correlation between (119)Sn Mossbauer and X-ray crystallographic data based on the point-charge model Theoretical calculations were performed with the B3LYP density functional employing 3-21G(*) and DZVP all electron basis sets showing good agreement with experimental findings General and Sn(IV) specific IR harmonic frequency scale factors for both basis sets were obtained from comparison with selected experimental frequencies (C) 2010 Elsevier B V All rights reserved
Resumo:
Triplet-excited riboflavin ((3)RF*) was found by laser flash photolysis to be quenched by polyunsaturated fatty acid methyl esters in tert-butanol/water (7:3, v/v) in a second-order reaction with k similar to 3.0 x 10(5) L mol(-1) s(-1) at 25 degrees C for methyl linoleate and 3.1 x 10(6) L mol(-1) s(-1), with Delta H double dagger = 22.6 kJ mol(-1) and Delta S double dagger = -62.3 J K(-1) mol(-1), for methyl linolenate in acetonitrile/water (8:2, v/v). For methyl oleate, k was <10(4) L mol(-1) s(-1). For comparison, beta-casein was found to have a rate constant k similar to 4.9 x 10(8) L mol(-1) s(-1). Singlet-excited flavin was not quenched by the esters as evidenced by insensitivity of steady-state fluorescence to their presence. Density functional theory (DFT) calculations showed that electron transfer from unsaturated fatty acid esters to triplet-excited flavins is endergonic, while a formal hydrogen atom transfer is exergonic (Delta G(HAT)degrees = -114.3, -151.2, and -151.2 kJ mol(-1) for oleate, linoleate, and linolenate, respectively, in acetonitrile). The reaction is driven by acidity of the lipid cation radical for which a pK(a) similar to -0.12 was estimated by DFT calculations. Absence of electrochemical activity in acetonitrile during cyclic voltammetry up to 2.0 V versus NHE confirmed that Delta G(ET)degrees > 0 for electron transfer. Interaction of methyl esters with (3)RF* is considered as initiation of the radical chain, which is subsequently propagated by combination reactions with residual oxygen. In this respect, carbon-centered and alkoxyl radicals were detected using the spin trapping technique in combination with electron paramagnetic resonance spectroscopy. Moreover, quenching of 3RF* yields, directly or indirectly, radical species which are capable of initiating oxidation in unsaturated fatty acid methyl esters. Still, deactivation of triplet-excited flavins by lipid derivatives was slower than by proteins (factor up to 10(4)), which react preferentially by electron transfer. Depending on the reaction environment in biological systems (including food), protein radicals are expected to interfere in the mechanism of light-induced lipid oxidation.
Resumo:
We investigated noble gas copper bonds in linear complexes represented by the NgCuX general formula in which Ng and X stand for a noble gas (neon, argon, krypton, or xenon) and a halogen (fluorine, chlorine or bromine), respectively, by coupled cluster methods and modified cc-pVQZ basis sets. The quantum theory of atoms in molecules (QTAIM) shows a linear relation between the dissociation energy or noble gas-copper bonds and the amount of electronic charge transferred mainly from the noble gas to copper during complexation. Large changes in the QTAIM quadrupole moments of copper and noble gases resulting from this bonding and a comparison between NgCuX and NgNaCl systems indicate that these noble gas-copper bonds should be better interpreted as predominantly covalent. Finally, QTAIM atomic dipoles of noble gases in NgNaCl systems agree satisfactorily with atomic dipoles given by a simple model for these NgNa van der Waals bonds.
Resumo:
Polynorbornadiene and polynorbornene were synthesized via ring opening metathesis polymerization (ROMP) with [RuCl(2)(PPh(3))(2)(amine)] as catalyst precursors, amine = piperidine (1) or perhydroazepine (2) in the presence of 5 mu L of ethyl diazoacetate (EDA) ([monomer]/[Ru] = 5000; 40 degrees C with 1; 25 degrees C with 2). The effects of the solvent volume (2-8 mL of CHCl(3)) reaction time (5-120 min) and atmosphere type (argon and air) on the yields were investigated to observe the behavior of the two different precursors. Quantitative yields were obtained for 60 or 120 min regardless of the starting volumes, either in argon or air, with both Ru species. However, low yields were obtained for short times (5-30 min) when the reactions are performed with large volumes (6-8 mL). In argon, the yields were larger with 2, associated to a faster propagation reaction controlled by the Ru active species. In air, the yields were larger with 1, associated to a higher resistance to O(2) of the starting and propagating Ru species. The different activities between 1 and 2 are discussed considering the steric hindrance and electronic characteristics of the amines such as ancillary ligands and their arrangements with PPh(3) and Cl(-) ions in the metal centers. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Eugenol is an allyl chain-substituted guaiacol in the biosynthesized phenylpropanoid compound class derived from Syzygium aromaticum L. and widely used in folk medicine. Nonetheless, its pharmacological use is limited by some problems, such as instability when exposed to light and high temperature. In order to enhance stability, the eugenol molecule was structurally modified, resulting in eugenyl acetate. The eugenyl acetate`s thermal behavior and crystal structure was then characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) and compared to a commercial sample.