902 resultados para Champ de force
Resumo:
This paper examines the relationship between class of origin, educational attainment, and class of entry to the labour force, in three cohorts of men in the Republic of Ireland using data collected in 1987. The three cohorts comprise men born (i) before 1937; (ii) between 1937 and 1949; and (iii) between 1950 and 1962. The paper assesses the degree of change over the three cohorts in respect of (a) the gross relationship between origins and entry class; (b) the partial effect (controlling for education) of origin class on entry class; (c) the partial effect of education (controlling for origins) on class of entry. In broad terms the liberal theory of industrialism would imply a movement, over the three cohorts, towards (a) increasing social fluidity; (b) a weakening of the partial effect of origin class; (c) a strengthening of the partial effect of education. These latter two trends should be particularly noticeable in the youngest cohort, which would, to some degree, have benefited from the introduction of free post-primary education in Ireland in 1967.
Our results provide almost no support for these hypotheses. We find that patterns of social fluidity in the origin/entry relationship remain unchanged over the cohorts. The partial effect of class remains relatively constant; and, while the partial effect of education on entry class changes over the cohorts, the most striking result in this area is the declining returns to higher levels of education. While the average level of educational attainment increased over the three cohorts, the advantages accruing to the possession of higher levels of education simultaneously diminished. Taken together our results suggest that, in Ireland, those classes that have historically enjoyed advantages in access to more desirable entry positions in the labour market have been remarkably adept at retaining their advantages during the course of industrialization and through the various educational and other labour market changes that have accompanied this process.
Resumo:
Probing the functionality of materials locally by means of scanning probe microscopy (SPM) requires a reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, e.g. instrumental and topographical cross-talk. Here we develop a linear resolution theory framework in order to describe the cross-talk effects, and apply it for elucidation of frequency-dependent cross-talk mechanisms in piezoresponse force microscopy. The use of a band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of a functional fit approach and multivariate statistical analysis methods for identification of data in band excitation SPM is explored.
Resumo:
Band excitation piezoresponse force microscopy enables local investigation of the nonlinear piezoelectric behavior of ferroelectric thin films. However, the presence of additional nonlinearity associated with the dynamic resonant response of the tip-surface junction can complicate the study of a material's nonlinearity. Here, the relative importance of the two nonlinearity sources was examined as a function of the excitation function. It was found that in order to minimize the effects of nonlinear tip-surface interactions but achieve good signal to noise level, an optimal excitation function must be used. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3593138]
Resumo:
Dynamic switching spectroscopy piezoresponse force microscopy is developed to separate thermodynamic and kinetic effects in local bias-induced phase transitions. The approaches for visualization and analysis of five-dimensional data are discussed. The spatial and voltage variability of relaxation behavior of the a-c domain lead zirconate-titanate surface suggest the interpretation in terms of surface charge dynamics. This approach is applicable to local studies of dynamic behavior in any system with reversible bias-induced phase transitions ranging from ferroelectrics and multiferroics to ionic systems such as batteries, fuel cells, and electroresistive materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590919]
Resumo:
In recent years there have been a growing number of publications on procedures for damage detection in beams from analysing their dynamic response to the passage of a moving force. Most of this research demonstrates their effectiveness by showing that a singularity that did not appear in the healthy structure is present in the response of the damaged structure. This paper elucidates from first principles how the acceleration response can be assumed to consist of ‘static’ and ‘dynamic’ components, and where the beam has experienced a localised loss in stiffness, an additional ‘damage’ component. The combination of these components establishes how the damage singularity will appear in the total response. For a given damage severity, the amplitude of the ‘damage’ component will depend on how close the damage location is to the sensor, and its frequency content will increase with higher velocities of the moving force. The latter has implications for damage detection because if the frequency content of the ‘damage’ component includes bridge and/or vehicle frequencies, it becomes more difficult to identify damage. The paper illustrates how a thorough understanding of the relationship between the ‘static‘ and ‘damage’ components contributes to establish if damage has occurred and to provide an estimation of its location and severity. The findings are corroborated using accelerations from a planar finite element simulation model where the effects of force velocity and bridge span are examined.
Resumo:
The presence of mobile ions complicates the implementation of voltage-modulated scanning probe microscopy techniques such as Kelvin probe force microscopy (KPFM). Overcoming this technical hurdle, however, provides a unique opportunity to probe ion dynamics and electrochemical processes in liquid environments and the possibility to unravel the underlying mechanisms behind important processes at the solid–liquid interface, including adsorption, electron transfer and electrocatalysis. Here we describe the development and implementation of electrochemical force microscopy (EcFM) to probe local bias- and time-resolved ion dynamics and electrochemical processes at the solid–liquid interface. Using EcFM, we demonstrate contact potential difference measurements, consistent with the principles of open-loop KPFM operation. We also demonstrate that EcFM can be used to investigate charge screening mechanisms and electrochemical reactions in the probe–sample junction. We further establish EcFM as a force-based imaging mode, allowing visualization of the spatial variability of sample-dependent local electrochemical properties.
Resumo:
This paper presents a 3D simulation system which is employed in order to predict cutting forces and tool deflection during end-milling operation. In order to verify the accuracy of 3D simulation, results (cutting forces and tool deflection) were compared with those based on the theoretical relationships, in terms of agreement with experiments. The results obtained indicate that the simulation is capable of predicting the cutting forces and tool deflection.
Resumo:
This article discusses the discourse on the justified use of force in the Strasbourg Court’s analysis of Article 3. With particular focus on the judgment in Güler and Öngel v Turkey, a case concerning the use of force by State agents against demonstrators, it addresses the question of the implications of such discourse, found in this and other cases, on the absolute nature of Article 3. It offers a perspective which suggests that the discourse on the justified use of force can be reconciled with Article 3’s absolute nature.