966 resultados para Cause of injury
Resumo:
Principals. Lightning is one of the most powerful and spectacular natural phenomena. Lightning strikes to humans are uncommon but can cause devastating injuries. We analyzed lightning-related admissions to our emergency department from January 2000 to December 2010 to review and highlight the main features of lightning-related injuries. Methods. All data were collected prospectively and entered in the emergency department' database (Qualicare Switzerland) and retrospectively analyzed. Results. Nine patients with lightning-related injuries presented to our emergency department. Four were female, and five were male. The most common site of injury was the nervous system (6 out of 9 patients) followed by the cardiovascular system (5 out of 9 patients). The third most common injuries occurred to the skin (3 out of 9 patients). Four of the patients had to be hospitalized for further observation. Conclusion. Reports of lightning strikes and related injuries are scarce. The establishment of an international register would therefore benefit the understanding of their injury patterns and facilitate specific treatment.
Resumo:
Spinal injuries secondary to trauma are a major cause of patient morbidity and a source of significant health care expenditure. Increases in traffic safety standards and improved health care resources may have changed the characteristics and incidence of spinal injury. The purpose of this study was to review a single metropolitan Level I trauma centre's experience to assess the changing characteristics and incidence of traumatic spinal injuries and spinal cord injuries (SCI) over a 13-year period.
Resumo:
Stem cell regeneration of damaged tissue has recently been reported in many different organs. Since the loss of retinal pigment epithelium (RPE) in the eye is associated with a major cause of visual loss - specifically, age-related macular degeneration - we investigated whether hematopoietic stem cells (HSC) given systemically can home to the damaged subretinal space and express markers of RPE lineage. Green fluorescent protein (GFP) cells of bone marrow origin were used in a sodium iodate (NaIO(3)) model of RPE damage in the mouse. The optimal time for adoptive transfer of bone marrow-derived stem cells relative to the time of injury and the optimal cell type [whole bone marrow, mobilized peripheral blood, HSC, facilitating cells (FC)] were determined by counting the number of GFP(+) cells in whole eye flat mounts. Immunocytochemistry was performed to identify the bone marrow origin of the cells in the RPE using antibodies for CD45, Sca-1, and c-kit, as well as the expression of the RPE-specific marker, RPE-65. The time at which bone marrow-derived cells were adoptively transferred relative to the time of NaIO(3) injection did not significantly influence the number of cells that homed to the subretinal space. At both one and two weeks after intravenous (i.v.) injection, GFP(+) cells of bone marrow origin were observed in the damaged subretinal space, at sites of RPE loss, but not in the normal subretinal space. The combined transplantation of HSC+FC cells appeared to favor the survival of the homed stem cells at two weeks, and RPE-65 was expressed by adoptively transferred HSC by four weeks. We have shown that systemically injected HSC homed to the subretinal space in the presence of RPE damage and that FC promoted survival of these cells. Furthermore, the RPE-specific marker RPE-65 was expressed on adoptively transferred HSC in the denuded areas.
Resumo:
AIMS: Cardiac myopathies are the second leading cause of death in patients with Duchenne and Becker muscular dystrophy, the two most common and severe forms of a disabling striated muscle disease. Although the genetic defect has been identified as mutations of the dystrophin gene, very little is known about the molecular and cellular events leading to progressive cardiac muscle damage. Dystrophin is a protein linking the cytoskeleton to a complex of transmembrane proteins that interact with the extracellular matrix. The fragility of the cell membrane resulting from the lack of dystrophin is thought to cause an excessive susceptibility to mechanical stress. Here, we examined cellular mechanisms linking the initial membrane damage to the dysfunction of dystrophic heart. METHODS AND RESULTS: Cardiac ventricular myocytes were enzymatically isolated from 5- to 9-month-old dystrophic mdx and wild-type (WT) mice. Cells were exposed to mechanical stress, applied as osmotic shock. Stress-induced cytosolic and mitochondrial Ca(2+) signals, production of reactive oxygen species (ROS), and mitochondrial membrane potential were monitored with confocal microscopy and fluorescent indicators. Pharmacological tools were used to scavenge ROS and to identify their possible sources. Osmotic shock triggered excessive cytosolic Ca(2+) signals, often lasting for several minutes, in 82% of mdx cells. In contrast, only 47% of the WT cardiomyocytes responded with transient and moderate intracellular Ca(2+) signals. On average, the reaction was 6-fold larger in mdx cells. Removal of extracellular Ca(2+) abolished these responses, implicating Ca(2+) influx as a trigger for abnormal Ca(2+) signalling. Our further experiments revealed that osmotic stress in mdx cells produced an increase in ROS production and mitochondrial Ca(2+) overload. The latter was followed by collapse of the mitochondrial membrane potential, an early sign of cell death. CONCLUSION: Overall, our findings reveal that excessive intracellular Ca(2+) signals and ROS generation link the initial sarcolemmal injury to mitochondrial dysfunctions. The latter possibly contribute to the loss of functional cardiac myocytes and heart failure in dystrophy. Understanding the sequence of events of dystrophic cell damage and the deleterious amplification systems involved, including several positive feed-back loops, may allow for a rational development of novel therapeutic strategies.
Resumo:
OBJECT: Early impairment of cerebral blood flow in patients with severe head injury correlates with poor brain tissue O2 delivery and may be an important cause of ischemic brain damage. The purpose of this study was to measure cerebral tissue PO2, lactate, and glucose in patients after severe head injury to determine the effect of increased tissue O2 achieved by increasing the fraction of inspired oxygen (FiO2). METHODS: In addition to standard monitoring of intracranial pressure and cerebral perfusion pressure, the authors continuously measured brain tissue PO2, PCO2, pH, and temperature in 22 patients with severe head injury. Microdialysis was performed to analyze lactate and glucose levels. In one cohort of 12 patients, the PaO2 was increased to 441+/-88 mm Hg over a period of 6 hours by raising the FiO2 from 35+/-5% to 100% in two stages. The results were analyzed and compared with the findings in a control cohort of 12 patients who received standard respiratory therapy (mean PaO2 136.4+/-22.1 mm Hg). The mean brain PO2 levels increased in the O2-treated patients up to 359+/-39% of the baseline level during the 6-hour FiO2 enhancement period, whereas the mean dialysate lactate levels decreased by 40% (p < 0.05). During this O2 enhancement period, glucose levels in brain tissue demonstrated a heterogeneous course. None of the monitored parameters in the control cohort showed significant variations during the entire observation period. CONCLUSIONS: Markedly elevated lactate levels in brain tissue are common after severe head injury. Increasing PaO2 to higher levels than necessary to saturate hemoglobin, as performed in the O2-treated cohort, appears to improve the O2 supply in brain tissue. During the early period after severe head injury, increased lactate levels in brain tissue were reduced by increasing FiO2. This may imply a shift to aerobic metabolism.
Resumo:
Free radicals play an important role in many physiological processes that occur in the human body such as cellular defense responses to infectious agents and a variety of cellular signaling pathways. While at low concentrations free radicals are involved in many significant metabolic reactions, high levels of free radicals can have deleterious effects on biomolecules like proteins, lipids, and DNA. Many physiological disorders such as diabetes, ageing, neurodegenerative diseases, and ischemia-reperfusion (I/R) injury are associated with oxidative stress.1 In particular, the deleterious effects caused by I/R injury developed during organ transplantation, cardiac infarct, and stroke have become the main cause of death in the United States and Europe.1,2 In this context, we synthesized and characterized a series of novel indole-amino acid conjugates as potential antioxidants for I/R injury. The synthesis of indole-phenol conjugate compounds is also discussed. Phenolic derivatives such as caffeic acid, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), resveratrol, and its analogues are known for their significant antioxidative properties. A series of resveratrol analogues have been designed and synthesized as potential antioxidants. The radical scavenging mechanisms for potential antioxidants and assays for the in vitro evaluation of antioxidant activities are also discussed.
Resumo:
Liver diseases represent an important cause of morbidity and mortality in the world. Death of hepatocytes and other hepatic cell types is a characteristic feature of several forms of liver injury such as cholestasis, viral hepatitis, drug- or toxin-induced injury, and alcohol-induced liver damage. Moreover, irrespectively of the reason, liver injury seems to be facilitated by similar immune effector mechanisms common to these various liver diseases. Indeed, common immune effector mechanisms may explain the high prevalence of cirrhosis and cancer development in most forms of liver disease. Improved understanding of the immune cell-mediated mechanisms involved in hepatocyte cell death could be beneficial for the development of common therapeutic strategies against different forms of liver diseases. In this review, we will discuss novel findings on the role of different immune cells in liver disease and immune cell-induced death executioner mechanisms involved in hepatocyte cell death.
Resumo:
Non-invasive imaging methods are increasingly entering the field of forensic medicine. Facing the intricacies of classical neck dissection techniques, postmortem imaging might provide new diagnostic possibilities which could also improve forensic reconstruction. The aim of this study was to determine the value of postmortem neck imaging in comparison to forensic autopsy regarding the evaluation of the cause of death and the analysis of biomechanical aspects of neck trauma. For this purpose, 5 deceased persons (1 female and 4 male, mean age 49.8 years, range 20-80 years) who had suffered odontoid fractures or atlantoaxial distractions with or without medullary injuries, were studied using multislice computed tomography (MSCT), magnetic resonance imaging (MRI) and subsequent forensic autopsy. Evaluation of the findings was performed by radiologists, forensic pathologists and neuropathologists. The cause of death could be established radiologically in three of the five cases. MRI data were insufficient due to metal artefacts in one case, and in another, ascending medullary edema as the cause of delayed death was only detected by histological analysis. Regarding forensic reconstruction, the imaging methods were superior to autopsy neck exploration in all cases due to the post-processing possibilities of viewing the imaging data. In living patients who suffer medullary injury, follow-up MRI should be considered to exclude ascending medullary edema.
Resumo:
Chronic renal allograft injury is often reflected by interstitial fibrosis (IF) and tubular atrophy (TA) without evidence of specific etiology. In most instances, IF/TA remains an irreversible disorder, representing a major cause of long-term allograft loss. As members of the protease family metzincins and functionally related genes are involved in fibrotic and sclerotic processes of the extracellular matrix (ECM), we hypothesized their deregulation in IF/TA. Gene expression and protein level analyses using allograft biopsies with and without Banff'05 classified IF/TA illustrated their deregulation. Expression profiles of these genes differentiated IF/TA from Banff'05 classified Normal biopsies in three independent microarray studies and demonstrated histological progression of IF/TA I to III. Significant upregulation of matrix metalloprotease-7 (MMP-7) and thrombospondin-2 (THBS-2) in IF/TA biopsies and sera was revealed in two independent patient sets. Furthermore, elevated THBS-2, osteopontin (SPP1) and beta-catenin may play regulatory roles on MMP. Our findings further suggest that deregulated ECM remodeling and possibly epithelial to mesenchymal transition (EMT) are implicated in IF/TA of kidney transplants, and that metzincins and related genes play an important role in these processes. Profiling of these genes may be used to complement IF/TA diagnosis and to disclose IF/TA progression in kidney transplant recipients.
Resumo:
Background: Obesity is a growing problem in industrial nations. The aim of this study was to determine the relationship between the body mass index (BMI) and the pattern of injury after polytrauma. Methods: This retrospective study included 651 patients with an injury severity score (ISS) ≥16 and aged ≥16 years who were subdivided into three groups: BMI < 25 kg/m2, BMI 25–30 kg/m2, and BMI > 30 kg/m2. The Abbreviated Injury Scale (AIS) was used to quantify the injuries in the different anatomical regions. The Murray score was assessed at admission and at its maximum during hospitalization to evaluate pulmonary problems. Data are presented as means ± standard errors of the means. One way analysis of variance, χ2 test and Kruskal-Wallis test were used for the analyses and the significance level was set at p < 0.05. Results: The AIS of the thorax was 3.2 ± 0.1 in the BMI < 25 kg/m2 group, 3.3 ± 0.1 in the BMI 25–30 kg/m2 group, and 2.8 ± 0.2 in the BMI > 30 kg/m2 group; p < 0.05. The Murray score at admission increased significantly with increasing BMI (0.8 ± 0.8 for BMI < 25 kg/m2, 0.9 ± 0.9 for BMI 25–30 kg/m2, and 1.0 ± 0.8 for BMI > 30 kg/m2; p < 0.05) as was the maximum Murray score during hospitalization (1.2 ± 0.9 for BMI < 25 kg/m2, 1.6 ± 1.0 for BMI 25–30 kg/m2, and 1.5 ± 0.9 for BMI > 30 kg/m2; p < 0.001). The number of ventilator days was also elevated significantly with increasing BMI (5.9 ± 0.4 for BMI < 25 kg/m2, 7.7 ± 0.8 for BMI 25–30 kg/m2, and 7.9 ± 1.6 for BMI > 30 kg/m2; p < 0.05). Conclusion: Overweight and obesity lead to a higher incidence of thoracic trauma in a polytrauma situation and may additionally handicap ventilation in an obstructive manner.
Resumo:
Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeria monocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response.
Resumo:
Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.
Resumo:
Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.
Resumo:
Spinal cord injury (SCI) is a devastating condition that affects people in the prime of their lives. A myriad of vascular events occur after SCI, each of which contributes to the evolving pathology. The primary trauma causes mechanical damage to blood vessels, resulting in hemorrhage. The blood-spinal cord barrier (BSCB), a neurovascular unit that limits passage of most agents from systemic circulation to the central nervous system, breaks down, resulting in inflammation, scar formation, and other sequelae. Protracted BSCB disruption may exacerbate cellular injury and hinder neurobehavioral recovery in SCI. In these studies, angiopoietin-1 (Ang1), an agent known to reduce vascular permeability, was hypothesized to attenuate the severity of secondary injuries of SCI. Using longitudinal magnetic resonance imaging (MRI) studies (dynamic contrast-enhanced [DCE]-MRI for quantification of BSCB permeability, highresolution anatomical MRI for calculation of lesion size, and diffusion tensor imaging for assessment of axonal integrity), the acute, subacute, and chronic effects of Ang1 administration after SCI were evaluated. Neurobehavioral assessments were also performed. These non-invasive techniques have applicability to the monitoring of therapies in patients with SCI. In the acute phase of injury, Ang1 was found to reduce BSCB permeability and improve neuromotor recovery. Dynamic contrast-enhanced MRI revealed a persistent compromise of the BSCB up to two months post-injury. In the subacute phase of injury, Ang1’s effect on reducing BSCB permeability was maintained and it was found to transiently reduce axonal integrity. The SCI lesion burden was assessed with an objective method that compared favorably with segmentations from human raters. In the chronic phase of injury, Ang1 resulted in maintained reduction in BSCB permeability, a decrease in lesion size, and improved axonal integrity. Finally, longitudinal correlations among data from the MRI modalities and neurobehavioral assays were evaluated. Locomotor recovery was negatively correlated with lesion size in the Ang1 cohort and positively correlated with diffusion measures in the vehicle cohort. In summary, the results demonstrate a possible role for Ang1 in mitigating the secondary pathologies of SCI during the acute and chronic phases of injury.
Resumo:
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods.