882 resultados para Cape Cod Bay
Resumo:
The upper Bay of Fundy is a critical stopover site for Semipalmated Sandpipers (Calidris pusilla) during their fall migration. However, little is known about factors that influence selection of feeding and roosting sites by these birds, or the extent to which birds move between different sites during their time in the region. Using radio-telemetry, we studied movement patterns, examined habitat use, and tested hypotheses associated with factors influencing foraging and roost-site selection. Movements of radio-tagged sandpipers were tracked in the upper Bay of Fundy in August 2004 and 2005. In 2004, sandpipers from the Minas Basin, Nova Scotia and Chignecto Bay, New Brunswick and Nova Scotia, were tracked, and in 2005, sandpipers were tracked only in Chignecto Bay. Sandpipers were highly mobile in both the Minas Basin 2004 and Chignecto Bay 2005, making daily movements of up to 20 km between foraging and roosting sites, although very little movement was detected in Chignecto Bay in 2004. Migrating sandpipers appeared to select foraging sites based on relative safety, as measured by distance to cover, provided that these sites offered an adequate food supply. Similarly, roosting sandpipers preferred sites that were far from nearby trees that might offer cover to predators. This preference for safe sites became more apparent later in their stay in the Bay of Fundy, when birds were heavier and, therefore, possibly more vulnerable to predation. Semipalmated Sandpipers appear to be flexible during their time in the upper Bay of Fundy, displaying year-to-year and site-to-site variability in movement and mudflat usage. Therefore, multiple, synchronized population counts should be conducted at known roost sites in order to more accurately estimate Semipalmated Sandpiper abundance in this region. Furthermore, in a highly dynamic system where food can be variable, landscape features such as distance to cover may be important factors to consider when selecting candidate sites for shorebird conservation measures.
Resumo:
This study examined the influence of a spruce budworm (Choristoneura fumiferana (Clem.)) outbreak on a boreal mixed-wood bird community in forest stands ranging in age from 0 to 223 yr. We asked if (1) patterns of species response were consistent with the existence of spruce budworm specialists, i.e., species that respond in a stronger quantitative or qualitative way than other species; (2) the superabundance of food made it possible for species to expand their habitat use in age classes that were normally less used; and (3) the response to budworm was limited to specialists or was it more widespread. Results here indicated that three species, specifically the Bay-breasted Warbler (Dendroica castanea), Tennessee Warbler (Vermivora peregrina), and Cape May Warbler (Dendroica tigrina), had a larger numerical response to the budworm outbreak. They responded with increases in density of up to tenfold over 4 or 5 yr. No other species responded with more than a twofold increase in the same time period. These species also showed a functional response by breeding more frequently in young stands aged 1–21 yr and intermediate stands aged 22–36 yr as budworm numbers increased. Our data also suggested that many species profited to a lesser extent from budworm outbreaks, but that this effect may be too subtle to detect in most studies. We found evidence of a positive numerical effect in at least 18 additional species in one or two stand-age categories but never in all three for any one species. Given the numerical response in many species and the potential influence of budworm on bird populations because of the vast extent of outbreaks, we believe that the population cycle of spruce budworm should be considered in any evaluation of population trends in eastern boreal birds.
Resumo:
Across North America, Bald Eagle (Haliaeetus leucocephalus) populations appear to be recovering following bans of DDT. A limited number of studies from across North America have recorded a surplus of nonbreeding adult Bald Eagles in dense populations when optimal habitat and food become limited. Placentia Bay, Newfoundland is one of these. The area has one of the highest densities of Bald Eagles in eastern North America, and has recently experienced an increase in the proportion of nonbreeding adults within the population. We tested whether the observed Bald Eagle population trends in Placentia Bay, Newfoundland during the breeding seasons 1990-2009 are due to habitat saturation. We found no significant differences in habitat or food resource characteristics between occupied territories and pseudo-absence data or between nest sites with high vs. low nest activity/occupancy rates. Therefore there is no evidence for habitat saturation for Bald Eagles in Placentia Bay and alternative hypotheses for the high proportion of nonbreeding adults should be considered. The Newfoundland population provides an interesting case for examination because it did not historically appear to be affected by pollution. An understanding of Bald Eagle population dynamics in a relatively pristine area with a high density can be informative for restoration and conservation of Bald Eagle populations elsewhere.
Resumo:
This paper investigates the use of data assimilation in coastal area morphodynamic modelling using Morecambe Bay as a study site. A simple model of the bay has been enhanced with a data assimilation scheme to better predict large-scale changes in bathymetry observed in the bay over a 3-year period. The 2DH decoupled morphodynamic model developed for the work is described, as is the optimal interpolation scheme used to assimilate waterline observations into the model run. Each waterline was acquired from a SAR satellite image and is essentially a contour of the bathymetry at some level within the inter-tidal zone of the bay. For model parameters calibrated against validation observations, model performance is good, even without data assimilation. However the use of data assimilation successfully compensates for a particular failing of the model, and helps to keep the model bathymetry on track. It also improves the ability of the model to predict future bathymetry. Although the benefits of data assimilation are demonstrated using waterline observations, any observations of morphology could potentially be used. These results suggest that data assimilation should be considered for use in future coastal area morphodynamic models.
Resumo:
Tidal Flats are important examples of extensive areas of natural environment that remain relatively unaffected by man. Monitoring of tidal flats is required for a variety of purposes. Remote sensing has become an established technique for the measurement of topography over tidal flats. A further requirement is to measure topographic changes in order to measure sediment budgets. To date there have been few attempts to make quantitative estimates of morphological change over tidal flat areas. This paper illustrates the use of remote sensing to measure quantitative and qualitative changes in the tidal flats of Morecambe Bay during the relatively long period 1991–2007. An understanding of the patterns of sediment transport within the Bay is of considerable interest for coastal management and defence purposes. Tidal asymmetry is considered to be the dominant cause of morphological change in the Bay, with the higher currents associated with the flood tide being the main agency moulding the channel system. Quantitative changes were measured by comparing a Digital Elevation Model (DEM) of the intertidal zone formed using the waterline technique applied to satellite Synthetic Aperture Radar (SAR) images from 1991–1994, to a second DEM constructed from airborne laser altimetry data acquired in 2005. Qualitative changes were studied using additional SAR images acquired since 2003. A significant movement of sediment from below Mean Sea Level (MSL) to above MSL was detected by comparing the two Digital Elevation Models, though the proportion of this change that could be ascribed to seasonal effects was not clear. Between 1991 and 2004 there was a migration of the Ulverston channel of the river Leven north-east by about 5 km, followed by the development of a straighter channel to the west, leaving the previous channel decoupled from the river. This is thought to be due to independent tidal and fluvial forcing mechanisms acting on the channel. The results demonstrate the effectiveness of remote sensing for measurement of long-term morphological change in tidal flat areas. An alternative use of waterlines as partial bathymetry for assimilation into a morphodynamic model of the coastal zone is also discussed.
Resumo:
The hypothesis that the elements of the modern species-rich flora of the Cape Floristic Region (CFR), South Africa, originated more or less simultaneously at the Miocene/Pliocene boundary, in response to the development of a mediterranean climate, has been challenged by numerous molecular dating estimates of Cape floral clades. These studies reveal a more gradual emergence, with the oldest clades originating in the Eocene, but others appearing later, some as recently as the Pliocene. That there are factors which might affect the dates recovered, such as choice of calibration point, analysis method, sampling density and the delimitation of Cape floral clades, suggests a need for further critical evaluation of the age estimates presented to date. In this study, the dates of origin of two Cape floral clades (the legume Crotalarieae p.p. and Podalyrieae) are estimated, constrained by a shared calibration point in a single analysis using an rDNA ITS phylogeny in which 633 taxa are sampled. The results indicate that these two clades arose contemporaneously 44-46 mya, not at the Miocene/Pliocene boundary as had been previously supposed. The contemporaneous origin of these Cape floral clades suggests that additional more inclusive analyses are needed before rejecting the hypothesis that a. single environmental trigger explains the establishment of Cape floral clades. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Phylogenetic relationships in the largely South African genus Muraltia (Polygalaceae) are assessed based on DNA sequence data (nuclear ribosomal ITS, plastid atpB-rbcL spacer, trnL intron, and trnL-F spacer) for 73 of the 117 currently recognized species in the genus. The previously recognised subgenus Muraltia is monophyletic, but the South African endemic genus Nylandtia is embedded in Muraltia subgenus Psiloclada. Subgenus Muraltia is found to be sister to subgenus Psiloclada. Estimates show the beginning of diversification of the two subgenera in the early Miocene (Psiloclada, 19.3+/-3.4 Ma; Muraltia, 21.0+/-3.5 Ma) pre-dating the establishment of the Benguela current (intermittent in the middle to late Oligocene and markedly intensifying in the late Miocene), and summer-dry climate in the Cape region. However, the later increase in species numbers is contemporaneous with these climatic phenomena. Results of dispersal-vicariance analyses indicate that major clades in Muraltia diversified from the southwestern and northwestern Cape, where most of the species are found today.
Resumo:
Phylogenetic methods hold great promise for the reconstruction of the transition from precursor to modern flora and the identification of underlying factors which drive the process. The phylogenetic methods presently used to address the question of the origin of the Cape flora of South Africa are considered here. The sampling requirements of each of these methods, which include dating of diversifications using calibrated molecular trees, sister pair comparisons, lineage through time plots and biogeographical optimizations are reviewed. Sampling of genes, genomes and species are considered. Although increased higher-level studies and increased sampling are required for robust interpretation, it is clear that much progress is already made. It is argued that despite the remarkable richness of the flora, the Cape flora is a valuable model system to demonstrate the utility of phylogenetic methods in determining the history of a modern flora.
Resumo:
The Cape Floristic Region is exceptionally species-rich both for its area and latitude, and this diversity is highly unevenly distributed among genera. The modern flora is hypothesized to result largely from recent (post-Oligocene) speciation, and it has long been speculated that particular species-poor lineages pre-date this burst of speciation. Here, we employ molecular phylogenetic data in combination with fossil calibrations to estimate the minimum duration of Cape occupation by 14 unrelated putative relicts. Estimates vary widely between lineages (7-101 Myr ago), and when compared with the estimated timing of onset of the modern flora's radiation, it is clear that many, but possibly not all, of these lineages pre-date its establishment. Statistical comparisons of diversities with lineage age show that low species diversity of many of the putative relicts results from a lower rate of diversification than in dated Cape radiations. In other putative relicts, however, we cannot reject the possibility that they diversify at the same underlying rate as the radiations, but have been present in the Cape for insufficient time to accumulate higher diversity. Although the extremes in diversity of currently dated Cape lineages fall outside expectations under a underlying diversification rate, sampling of all Cape lineages would be required to reject this null hypothesis.