982 resultados para Cambridge Junction (Mich.)
Resumo:
Many cell types in the retina are coupled via gap junctions and so there is a pressing need for a potent and reversible gap junction antagonist. We screened a series of potential gap junction antagonists by evaluating their effects on dye coupling in the network of A-type horizontal cells. We evaluated the following compounds: meclofenamic acid (MFA), mefloquine, 2-aminoethyldiphenyl borate (2-APB), 18-alpha-glycyrrhetinic acid, 18-beta-glycyrrhetinic acid (18-beta-GA), retinoic acid, flufenamic acid, niflumic acid, and carbenoxolone. The efficacy of each drug was determined by measuring the diffusion coefficient for Neurobiotin (Mills & Massey, 1998). MFA, 18-beta-GA, 2-APB and mefloquine were the most effective antagonists, completely eliminating A-type horizontal cell coupling at a concentration of 200 muM. Niflumic acid, flufenamic acid, and carbenoxolone were less potent. Additionally, carbenoxolone was difficult to wash out and also may be harmful, as the retina became opaque and swollen. MFA, 18-beta-GA, 2-APB and mefloquine also blocked coupling in B-type horizontal cells and AII amacrine cells. Because these cell types express different connexins, this suggests that the antagonists were relatively non-selective across several different types of gap junction. It should be emphasized that MFA was water-soluble and its effects on dye coupling were easily reversible. In contrast, the other gap junction antagonists, except carbenoxolone, required DMSO to make stock solutions and were difficult to wash out of the preparation at the doses required to block coupling in A-type HCs. The combination of potency, water solubility and reversibility suggest that MFA may be a useful compound to manipulate gap junction coupling.
Resumo:
The loss of skeletal muscle mass is believed to be the dominant reason for reduced strength in aging humans. The purpose of this investigation was to gain some information as to why skeletal muscles lose mass as we age. Since nervous system innervation is essential for skeletal muscle fiber viability, incomplete regional reinnervation during normal synaptic junction turnover has been hypothesized to result in selective muscle fiber loss. Examined here was the age-related association in skeletal muscle between atrophy and the expression of mRNAs encoding the γ- and ϵ-subunits of the nicotinic acetylcholine receptor, myogenin, and muscle specific receptor kinase (MuSK). Gastrocnemius and biceps brachii muscles were collected from young (2 month), adult (18 month), and old (31 month) Fischer 344 cross brown Norway F 1 male rats. In the gastrocnemius, muscles of old vs. young and adult rats, lower muscle mass was accompanied by significantly elevated acetylcholine receptor γ-subunit, myogenin, and MuSK mRNA levels. In contrast, the biceps brachii muscle in the same animals exhibited neither atrophy nor a change in acetylcholine receptor γ-subunit, myogenin, or MuSK mRNA levels. Expression of the acetylcholine receptor ϵ-subunit mRNA did not change with age in either gastrocnemius or biceps brachii muscles. Since acetylcholine receptor γ-subunit, myogenin, and MuSK mRNA levels are upregulated in surgically denervated skeletal muscles of young rats while expression of the acetylcholine receptor ϵ-subunit does not change, the findings of the current investigation suggest that a select fiber population within atrophied skeletal muscles of old rats may be in a denervated-like state. I speculate that increases in γ-subunit, myogenin, and MuSK mRNA levels in atrophied muscles of old rats are compensatory responses to nerve terminal retraction. Indeed, a prolongation of denervation in these muscle fibers would subsequently result in their atrophy and death, ultimately leading to a decline in the number of force generating elements present in the muscle. ^
Resumo:
Die vorliegende Untersuchung der Vertextung von Aids in Autobiografien fokussiert die Frage, welcher Darstellungsstrategien diese sich bedienen und welche Funktionen sie in den westlichen Kulturen übernehmen. Vier Autobiografien werden exemplarisch mit Hilfe der Systemtheorie und der Diskursanalyse analysiert und auf folgende Leitfragen hin untersucht: Sind die AutorInnen an Aids erkrankt oder nicht? Welche Lebenszeit steht ihnen zur Verfügung? Sind sie professionelle Schriftsteller oder Laien? Welche Rolle spielt ihr Geschlecht? Welche Werte werden wie vermittelt? Wird Akzeptabilität geschaffen? Wie wird mit den Grenzen des Akzeptablen umgegangen? Wie wird die Konstruktion und Destruktion des schreibenden Subjektes angesichts der Krankheitserfahrung verhandelt? Das untersuchte Material umfasst ein Spektrum, das • das schnelle Sterben an Aids, das lange Leben mit Aids sowie das Leben als HIV-Negativer in Gegenwart von Aids zeigt. • von gesellschaftlich orientierter Bewältigung der Krankheitserfahrung über individuelle Bewältigung bis hin zur Verweigerung der gesellschaftlichen Integration reicht. • den unterschiedlichen Einsatz von Metaphern bei der Sinngebung und der Vertextung von Körpererfahrung aufzeigt: Sterben als Geburt (Normalisierungsrhetorik), Sterben als Holocaust (Eskalationsrhetorik), Krankheitserfahrung als Generator immer neuer, überbordender Sprachbilder.
Resumo:
AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.
Resumo:
[Wilhelm Abraham Teller]
Resumo:
Individuals react to violation of social norms by outgroup members differently than to transgressions of those same norms by ingroup members: namely outgroup perpetrators are punished much more harshly than ingroup perpetrators. This parochial punishment pattern has been observed and extensively studied in social psychology and behavioral economics. Despite progress in recent years, however, little is known about the neural underpinnings of this intergroup bias. Here, we demonstrate by means of transcranial magnetic stimulation (TMS) that the transient disruption of the right, but not the left temporo-parietal junction (TPJ), reduces parochial punishment in a third-party punishment paradigm with real social groups. Moreover, we show that this observed TMS effect on parochial punishment is mediated by a classical punishment motive, i.e. retaliation. Finally, our data suggests that a change in perspective-taking might be the underlying mechanism that explains the impact of right TPJ disruption on retaliation motivation and parochial punishment. These findings provide the first causal evidence that the right TPJ plays a pivotal role in the implementation of parochial behaviors.
Resumo:
Over the past years, in numerous studies the DNA double helix serves as a scaffold for the controlled arrangement of functional molecules, including a wide range of different chromophores. Other nucleic acid structures like the DNA three-way junction have been exploited for this purpose as well. Recently, the successful development of DNA-based light-harvesting antenna systems have been reported. Herein, we describe the use of the DNA three-way junction (3WJ) as a versatile scaffold for the modular construction of an artificial light harvesting complex (LHC). The LHC is based on a modular construction in which a phenanthrene antenna is located in one of the three stems and the acceptor is brought into proximity of the antenna through the annealing of the third strand. Phenanthrene excitation (320 nm) is followed by energy transfer to pyrene (resulting in exciplex emission), perylenediimide (quencher) or a cyanine dye (cyanine fluorescence).
Resumo:
ed. by W. H. Lowe