992 resultados para Calbuco Volcano


Relevância:

10.00% 10.00%

Publicador:

Resumo:

New data show that island arc rocks have (Pb-210/Ra-226)(o) ratios which range from as low as 0.24 up to 2.88. In contrast, (Ra-22S/Th-232) appears always within error of I suggesting that the large Ra-226-excesses observed in arc rocks were generated more than 30 years ago. This places a maximum estimate on melt ascent velocities of around 4000 m/year and provides further confidence that the Ra-226 excesses reflect deep (source) processes rather than shallow level alteration or seawater contamination. Conversely, partial melting must have occurred more than 30 years prior to eruption. The Pb-210 deficits are most readily explained by protracted magma degassing. Using published numerical models, the data suggest that degassing occurred continuously for periods up to several decades just prior to eruption but no link with eruption periodicity was found. Longer periods are required if degassing is discontinuous, less than 100% efficient or if magma is recharged or stored after degassing. The long durations suggest much of this degassing occurs at depth with implications for the formation of hydrothermal and copper-porphyry systems. A suite of lavas erupted in 1985-1986 from Sangeang Api volcano in the Sunda arc are characterised by deficits of Pb-210 relative to Ra-226 from which 6-8 years of continuous Rn-222 degassing would be inferred from recent numerical models. These data also form a linear (Pb-210)/Pb-(Ra-226)/Pb array which might be interpreted as a 71-year isochron. However, the array passes through the origin suggesting displacement downwards from the equiline in response to degassing and so the slope of the array is inferred not to have any age significance. Simple modelling shows that the range of (Ra-226)/Pb ratios requires thousands of years to develop consistent with differentiation occurring in response to cooling at the base of the crust. Thus, degassing post-dated, and was not responsible for magma differentiation. The formation, migration and extraction of gas bubbles must be extremely efficient in mafic magma whereas the higher viscosity of more siliceous magmas retards the process and can lead to Pb-210 excesses. A possible negative correlation between (Pb-210/Ra-226)(o) and SO2 emission rate requires further testing but may have implications for future eruptions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A ground-based millimetre wave radar, AVTIS (All-weather Volcano Topography Imaging Sensor), has been developed for topographic monitoring. The instrument is portable and capable of measurements over ranges up to similar to 7 km through cloud and at night. In April and May 2005, AVTIS was deployed at Arenal Volcano, Costa Rica, in order to determine topographic changes associated with the advance of a lava flow. This is the first reported application of mm-wave radar technology to the measurement of lava flux rates. Three topographic data sets of the flow were acquired from observation distances of similar to 3 km over an eight day period, during which the flow front was detected to have advanced similar to 200 m. Topographic differences between the data sets indicated a flow thickness of similar to 10 m, and a dense rock equivalent lava flux of similar to 0.20 +/- 0.08 m(3) s(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using topographic data collected by radar interferometry, stereo-photogrammetry, and field survey we have measured the changing surface of Volcan Arenal in Costa Rica over the period from 1980 to 2004. During this time this young volcano has mainly effused basaltic andesite lava, continuing the activity that began in 1968. Explosive products form only a few percent of the volumetric output. We have calculated digital elevation models for the years 1961, 1988 and 1997 and modified existing models for 2000 and 2004. From these we have estimated the volume of lava effused and coupled this with the data presented by an earlier study for 1968-1980. We find that a dense rock equivalent volume of 551 M m(3) was effused from 1968 to 2004. The dense rock equivalent effusion rate fell from about 2 m(3) s(-1) to about 0.1-0.2 m(3) s(-1) over the same period, with an average rate of about 0.5 m(3) s(-1). Between 1980 and 2004, the average effusion rate was 0.36 m(3) s(-1), a similar rate to that measured between 1974 and 1980. There have been two significant deviations from this long-term rate. The effusion rate increased from 1984 to 1991, at the same time as explosivity increased. After a period of moderate effusion rates in the 1990s, the rate fell to lower levels around 1999. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of a lava dome involves fractionation of the lava into core and clastic components. We show that for three separate, successive andesitic lava domes that grew at Soufrière Hills volcano, Montserrat, between 1999 and 2007, the volumetric proportion of the lava converted to talus or pyroclastic flow deposits was 50%–90% of the lava extruded. Currently, only 8% of the total magma extruded during the 1995–2007 eruption remains as core lava. The equivalent representation in the geological record will probably be even lower. Most of the lava extruded at the surface flowed no further than 150–300 m from the vent before disaggregation, resulting in a lava core whose shape tends to a cylinder. Moderate to high extrusion rates at the Soufrière Hills domes may have contributed to the large clastic fraction observed. Creating talus dissipates much of the energy that would otherwise be stored in the core lava of domes. The extreme hazards from large pyroclastic flows and blasts posed by wholesale collapse of a lava dome depend largely on the size of the lava core, and hence on the aggregate history of the partitioning process, not on the size of the dome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have applied time series analytical techniques to the flux of lava from an extrusive eruption. Tilt data acting as a proxy for flux are used in a case study of the May–August 1997 period of the eruption at Soufrière Hills Volcano, Montserrat. We justify the use of such a proxy by simple calibratory arguments. Three techniques of time series analysis are employed: spectral, spectrogram and wavelet methods. In addition to the well-known ~9-hour periodicity shown by these data, a previously unknown periodic flux variability is revealed by the wavelet analysis as a 3-day cycle of frequency modulation during June–July 1997, though the physical mechanism responsible is not clear. Such time series analysis has potential for other lava flux proxies at other types of volcanoes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Eyjafjallajökull volcano in Iceland erupted explosively on 14 April 2010, emitting a plume of ash into the atmosphere. The ash was transported from Iceland toward Europe where mostly cloud-free skies allowed ground-based lidars at Chilbolton in England and Leipzig in Germany to estimate the mass concentration in the ash cloud as it passed overhead. The UK Met Office's Numerical Atmospheric-dispersion Modeling Environment (NAME) has been used to simulate the evolution of the ash cloud from the Eyjafjallajökull volcano during the initial phase of the ash emissions, 14–16 April 2010. NAME captures the timing and sloped structure of the ash layer observed over Leipzig, close to the central axis of the ash cloud. Relatively small errors in the ash cloud position, probably caused by the cumulative effect of errors in the driving meteorology en route, result in a timing error at distances far from the central axis of the ash cloud. Taking the timing error into account, NAME is able to capture the sloped ash layer over the UK. Comparison of the lidar observations and NAME simulations has allowed an estimation of the plume height time series to be made. It is necessary to include in the model input the large variations in plume height in order to accurately predict the ash cloud structure at long range. Quantitative comparison with the mass concentrations at Leipzig and Chilbolton suggest that around 3% of the total emitted mass is transported as far as these sites by small (<100 μm diameter) ash particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large magnitude explosive eruptions are the result of the rapid and large-scale transport of silicic magma stored in the Earth's crust, but the mechanics of erupting teratonnes of silicic magma remain poorly understood. Here, we demonstrate that the combined effect of local crustal extension and magma chamber overpressure can sustain linear dyke-fed explosive eruptions with mass fluxes in excess of 10^10 kg/s from shallow-seated (4–6 km depth) chambers during moderate extensional stresses. Early eruption column collapse is facilitated with eruption duration of the order of few days with an intensity of at least one order of magnitude greater than the largest eruptions in the 20th century. The conditions explored in this study are one way in which high mass eruption rates can be achieved to feed large explosive eruptions. Our results corroborate geological and volcanological evidences from volcano-tectonic complexes such as the Sierra Madre Occidental (Mexico) and the Taupo Volcanic Zone (New Zealand).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volcanic ash fallout associated with renewal of explosive activity at Colima, represents a serious threat to the surrounding urbanized area. Here we assess the tephra fallout hazard associated with a Plinian eruption scenario. The eruptive history of Volcán de Colima shows that Plinian eruptions occur approximately every 100 years and the last eruption, the 1913, represents the largest historic eruption of this volcano. We used the last eruption as a reference to discuss volcanic hazard and risk scenarios connected with ash fallout. Tephra fallout deposits are modeled using HAZMAP, a model based on a semi-analytical solution of the advection– diffusion–sedimentation equation for volcanic particles. Based on a statistical study of wind profiles at Colima region, we first reconstructed ash loading maps and then computed ground load probability maps for different seasons. The obtained results show that a Plinian eruptive scenario at Volcán de Colima, could seriously damage more than 10 small towns and ranches, and potentially affect big cities located at tens of kilometers from the eruptive center. The probability maps obtained are aimed to give support to the risk mitigation strategies

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During April-May 2010 volcanic ash clouds from the Icelandic Eyjafjallajökull volcano reached Europe causing an unprecedented disruption of the EUR/NAT region airspace. Civil aviation authorities banned all flight operations because of the threat posed by volcanic ash to modern turbine aircraft. New quantitative airborne ash mass concentration thresholds, still under discussion, were adopted for discerning regions contaminated by ash. This has implications for ash dispersal models routinely used to forecast the evolution of ash clouds. In this new context, quantitative model validation and assessment of the accuracies of current state-of-the-art models is of paramount importance. The passage of volcanic ash clouds over central Europe, a territory hosting a dense network of meteorological and air quality observatories, generated a quantity of observations unusual for volcanic clouds. From the ground, the cloud was observed by aerosol lidars, lidar ceilometers, sun photometers, other remote-sensing instru- ments and in-situ collectors. From the air, sondes and multiple aircraft measurements also took extremely valuable in-situ and remote-sensing measurements. These measurements constitute an excellent database for model validation. Here we validate the FALL3D ash dispersal model by comparing model results with ground and airplane-based measurements obtained during the initial 14e23 April 2010 Eyjafjallajökull explosive phase. We run the model at high spatial resolution using as input hourly- averaged observed heights of the eruption column and the total grain size distribution reconstructed from field observations. Model results are then compared against remote ground-based and in-situ aircraft-based measurements, including lidar ceilometers from the German Meteorological Service, aerosol lidars and sun photometers from EARLINET and AERONET networks, and flight missions of the German DLR Falcon aircraft. We find good quantitative agreement, with an error similar to the spread in the observations (however depending on the method used to estimate mass eruption rate) for both airborne and ground mass concentration. Such verification results help us understand and constrain the accuracy and reliability of ash transport models and it is of enormous relevance for designing future operational mitigation strategies at Volcanic Ash Advisory Centers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accumulation of tephra fallout produced during explosive eruptions can cause roof collapses in areas near the volcano, when the weight of the deposit exceeds some threshold value that depends on the quality of buildings. The additional loading of water that remains trapped in the tephra deposits due to rainfall can contribute to increasing the loading of the deposits on the roofs. Here we propose a simple approach to estimate an upper bound for the contribution of rain to the load of pyroclastic deposits that is useful for hazard assessment purposes. As case study we present an application of the method in the area of Naples, Italy, for a reference eruption from Vesuvius volcano.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lava dome eruptions are sometimes characterised by large periodic fluctuations in extrusion rate over periods of hours that may be accompanied by Vulcanian explosions and pyroclastic flows. We consider a simple system of nonlinear equations describing a 1D flow of lava extrusion through a deep elastic dyke feeding a shallower cylindrical conduit in order to simulate this short-period cyclicity. Stick-slip conditions depending on a critical shear stress are assumed at the wall boundary of the cylindrical conduit. By analogy with the behaviour of industrial polymers in a plastic extruder, the elastic dyke acts like a barrel and the shallower cylindrical portion of the conduit as a die for the flow of magma acting as a polymer. When we applied the model to the Soufrière Hills Volcano, Montserrat, for which the key parameters have been evaluated from previous studies, cyclic extrusions with periods from 3 to 30 h were readily simulated, matching observations. The model also reproduces the reduced period of cycles observed when a major unloading event occurs due to lava dome collapse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El Chichón volcano, Chiapas, Mexico, erupted explosively on March 29th, 1982, after a repose period of about 550 years. Amongst ten eruptive episodes documented between March 29th and April 4th, only the three that occurred on March 29th and April 4th produced significant pyroclastic tephra deposits. Here we use analytical (HAZMAP) and numerical (FALL3D) tephra transport models to reconstruct the deposits and the atmospheric plume dispersal associated with the three main fallout units of the 1982 eruption. On the basis of such a reconstruction, we produce hazard maps of tephra fallout associated to a Plinian eruption and discuss the implications of such a severe eruption scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The All-Weather Volcano Topography Imaging Sensor remote sensing instrument is a custom-built millimeter-wave (MMW) sensor that has been developed as a practical field tool for remote sensing of volcanic terrain at active lava domes. The portable instrument combines active and passive MMW measurements to record topographic and thermal data in almost all weather conditions from ground-based survey points. We describe how the instrument is deployed in the field, the quality of the primary ranging and radiometric measurements, and the postprocessing techniques used to derive the geophysical products of the target terrain, surface temperature, and reflectivity. By comparison of changing topography, we estimate the volume change and the lava extrusion rate. Validation of the MMW radiometry is also presented by quantitative comparison with coincident infrared thermal imagery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During April and May 2010 the ash cloud from the eruption of the Icelandic volcano Eyjafjallajökull caused widespread disruption to aviation over northern Europe. The location and impact of the eruption led to a wealth of observations of the ash cloud were being obtained which can be used to assess modelling of the long range transport of ash in the troposphere. The UK FAAM (Facility for Airborne Atmospheric Measurements) BAe-146-301 research aircraft overflew the ash cloud on a number of days during May. The aircraft carries a downward looking lidar which detected the ash layer through the backscatter of the laser light. In this study ash concentrations derived from the lidar are compared with simulations of the ash cloud made with NAME (Numerical Atmospheric-dispersion Modelling Environment), a general purpose atmospheric transport and dispersion model. The simulated ash clouds are compared to the lidar data to determine how well NAME simulates the horizontal and vertical structure of the ash clouds. Comparison between the ash concentrations derived from the lidar and those from NAME is used to define the fraction of ash emitted in the eruption that is transported over long distances compared to the total emission of tephra. In making these comparisons possible position errors in the simulated ash clouds are identified and accounted for. The ash layers seen by the lidar considered in this study were thin, with typical depths of 550–750 m. The vertical structure of the ash cloud simulated by NAME was generally consistent with the observed ash layers, although the layers in the simulated ash clouds that are identified with observed ash layers are about twice the depth of the observed layers. The structure of the simulated ash clouds were sensitive to the profile of ash emissions that was assumed. In terms of horizontal and vertical structure the best results were obtained by assuming that the emission occurred at the top of the eruption plume, consistent with the observed structure of eruption plumes. However, early in the period when the intensity of the eruption was low, assuming that the emission of ash was uniform with height gives better guidance on the horizontal and vertical structure of the ash cloud. Comparison of the lidar concentrations with those from NAME show that 2–5% of the total mass erupted by the volcano remained in the ash cloud over the United Kingdom.