488 resultados para CSTAR-ALGEBRAS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A spatial object consists of data assigned to points in a space. Spatial objects, such as memory states and three dimensional graphical scenes, are diverse and ubiquitous in computing. We develop a general theory of spatial objects by modelling abstract data types of spatial objects as topological algebras of functions. One useful algebra is that of continuous functions, with operations derived from operations on space and data, and equipped with the compact-open topology. Terms are used as abstract syntax for defining spatial objects and conditional equational specifications are used for reasoning. We pose a completeness problem: Given a selection of operations on spatial objects, do the terms approximate all the spatial objects to arbitrary accuracy? We give some general methods for solving the problem and consider their application to spatial objects with real number attributes. © 2011 British Computer Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are applied power mappings in algebras with logarithms induced by a given linear operator D in order to study particular properties of powers of logarithms. Main results of this paper will be concerned with the case when an algebra under consideration is commutative and has a unit and the operator D satisfies the Leibniz condition, i.e. D(xy) = xDy + yDx for x, y ∈ dom D. Note that in the Number Theory there are well-known several formulae expressed by means of some combinations of powers of logarithmic and antilogarithmic mappings or powers of logarithms and antilogarithms (cf. for instance, the survey of Schinzel S[1].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AMS Subj. Classification: 03C05, 08B20

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 16R10, 16R20, 16R50

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Марта Теофилова - Конструиран е пример на четиримерно специално комплексно многообразие с норденова метрика и постоянна холоморфна секционна кривина чрез двупара-метрично семейство от разрешими алгебри на Ли. Изследвани са кривинните свойства на полученото многообразие. Дадени са необходими и достатъчни усло-вия за разглежданото многообразие да бъде изотропно келерово.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 62F12, 62M05, 62M09, 62M10, 60G42.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 46B20. Secondary: 46H99, 47A12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 13N15, 13A50, 16W25.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente tesis est a centrada en dos temas principales: el primero abarca el primer cap tulo y el segundo se divide entre los cap tulos dos y tres. En el primer cap tulo estudio un problema que apareci o como tal hace relativamente poco tiempo (aunque ya en la segunda mitad del pasado siglo se publicaron una serie de resultados que, con la terminolog a adecuada, estar an englobados dentro de esta teor a). Nos interesaremos en la b usqueda de estructuras algebraicas (como espacios vectoriales, algebras, espacios de Banach) contenidas en subconjuntos de funciones cuyos elementos (con la posible excepci on del elemento nulo) veri can ciertas propiedades anti-intuitivas (propiedades de dif cil visualizaci on). Ello nos puede conducir a la idea de c omo la intuci on puede enga~narnos, y sugerir que, aunque se haya dedicado una ingente cantidad de esfuerzo y tiempo para encontrar un unico ejemplo que veri que tales propiedades, y dicho trabajo pueda dar la idea de que no existen muchos m as espec menes de similares caracter sticas, de hecho existen ejemplares su cientes como para construir espacios \grandes" cuyos elementos (salvo el cero) satisfacen las mismas propiedades. M as espec camente, decimos que un subconjunto de un espacio vectorial topol ogico es -lineable (dado un numero cardinal ) si podemos garantizar la existencia de un espacio vectorial de dimensi on contenido en el conjunto (uni on el elemento cero, en caso de que cero no forme parte del conjunto de partida). Si el espacio vectorial es cerrado, nos referiremos a este conjunto como - espaciable (y la propiedad que trataremos ser a la de -espaciabilidad) y si la estructura en cuesti on es un algebra de Banach, entonces diremos que el conjunto es ( ; )-algebrable (donde aqu es la cardinalidad de un conjunto minimal de generadores del algebra)...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We give a new proof that for a finite group G, the category of rational G-equivariant spectra is Quillen equivalent to the product of the model categories of chain complexes of modules over the rational group ring of the Weyl group of H in G, as H runs over the conjugacy classes of subgroups of G. Furthermore, the Quillen equivalences of our proof are all symmetric monoidal. Thus we can understand categories of algebras or modules over a ring spectrum in terms of the algebraic model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present criteria for unital elementary operators (of small length) on unital semisimple Banach algebras to be spectral isometries. The surjective ones among them turn out to be algebra automorphisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the automatic regularity of continuous algebra homomorphisms between Riesz algebras of regular operators on Banach lattices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les algèbres de Temperley-Lieb originales, aussi dites régulières, apparaissent dans de nombreux modèles statistiques sur réseau en deux dimensions: les modèles d'Ising, de Potts, des dimères, celui de Fortuin-Kasteleyn, etc. L'espace d'Hilbert de l'hamiltonien quantique correspondant à chacun de ces modèles est un module pour cette algèbre et la théorie de ses représentations peut être utilisée afin de faciliter la décomposition de l'espace en blocs; la diagonalisation de l'hamiltonien s'en trouve alors grandement simplifiée. L'algèbre de Temperley-Lieb diluée joue un rôle similaire pour des modèles statistiques dilués, par exemple un modèle sur réseau où certains sites peuvent être vides; ses représentations peuvent alors être utilisées pour simplifier l'analyse du modèle comme pour le cas original. Or ceci requiert une connaissance des modules de cette algèbre et de leur structure; un premier article donne une liste complète des modules projectifs indécomposables de l'algèbre diluée et un second les utilise afin de construire une liste complète de tous les modules indécomposables des algèbres originale et diluée. La structure des modules est décrite en termes de facteurs de composition et par leurs groupes d'homomorphismes. Le produit de fusion sur l'algèbre de Temperley-Lieb originale permet de «multiplier» ensemble deux modules sur cette algèbre pour en obtenir un autre. Il a été montré que ce produit pouvait servir dans la diagonalisation d'hamiltoniens et, selon certaines conjectures, il pourrait également être utilisé pour étudier le comportement de modèles sur réseaux dans la limite continue. Un troisième article construit une généralisation du produit de fusion pour les algèbres diluées, puis présente une méthode pour le calculer. Le produit de fusion est alors calculé pour les classes de modules indécomposables les plus communes pour les deux familles, originale et diluée, ce qui vient ajouter à la liste incomplète des produits de fusion déjà calculés par d'autres chercheurs pour la famille originale. Finalement, il s'avère que les algèbres de Temperley-Lieb peuvent être associées à une catégorie monoïdale tressée, dont la structure est compatible avec le produit de fusion décrit ci-dessus. Le quatrième article calcule explicitement ce tressage, d'abord sur la catégorie des algèbres, puis sur la catégorie des modules sur ces algèbres. Il montre également comment ce tressage permet d'obtenir des solutions aux équations de Yang-Baxter, qui peuvent alors être utilisées afin de construire des modèles intégrables sur réseaux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers.