938 resultados para CRITICAL HEAT FLUX


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-amplitude, rapid climate fluctuations are common features of glacial times. The prominent changes in air temperature recorded in the Greenland ice cores (Dansgaard et al., 1993, doi:10.1038/339532a0; Grootes et al., 1993 doi:10.1038/366552a0) are coherent with shifts in the magnitude of the northward heat flux carried by the North Atlantic surface ocean (Bond et al., 1993, doi:10.1038/365143a0; Bond and Lotti, 1995, doi:10.1126/science.267.5200.1005); changes in the ocean's thermohaline circulation are a key component in many explanations of this climate flickering (Broecker, 1997, doi:10.1126/science.278.5343.1582). Here we use stable-isotope and other sedimentological data to reveal specific oceanic reorganizations during these rapid climate-change events. Deep water was generated more or less continuously in the Nordic Seas during the latter part of the last glacial period (60 to 10 thousand years ago), but by two different mechanisms. The deep-water formation occurred by convection in the open ocean during warmer periods (interstadials). But during colder phases (stadials), a freshening of the surface ocean reduced or stopped open-ocean convection, and deep-water formation was instead driven by brine-release during sea-ice freezing. These shifting magnitudes and modes nested within the overall continuity of deep-water formation were probably important for the structuring and rapidity of the prevailing climate changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high-resolution sedimentary record from the subarctic Malangen fjord in northern Norway, northeastern North Atlantic has been investigated in order to reconstruct variations in influx of Atlantic Water for the last 2000 years. The fjord provides a regional oceanographic climatic signal reflecting changes in the North Atlantic heat flux at this latitude because of its deep sill and the relatively narrow adjoining continental shelf. The reconstructions are based on oxygen and carbon isotopic studies of benthic foraminifera from a high accumulation basin in the Malangen fjord, providing subdecadal time resolution. A comparison between instrumental measurements of bottom water temperatures at the core location and the reconstructed temperatures from benthic foraminiferal d18O for the same time period demonstrates that the stable isotope values reflect the bottom water temperatures very well. The reconstructed temperature record shows an overall decline in temperature of c. 1°C from c. 40 BC to ad 1350. This cooling trend is assumed to be driven by an orbital forced reduction in insolation. Superimposed on the general cooling trend are several periods of warmer or colder temperatures. The long-term fluctuations in the Malangen fjord are concurrent with fluctuations of Atlantic Water in the northern North Atlantic. Although they are not directly comparable, comparisons of atmospheric temperatures and marine records, indicate a close coupling between the climate systems. After ad l800 the record shows an unprecedented warming within the last 2000 years.