941 resultados para COSMO KENDA LETKF ensemble assimilation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instrumental observations, palaeo-proxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviours mean that the precise nature and mechanisms of this variability are unclear. Here, we analyse an exceptionally large multi-model ensemble of 42 present-generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea co-vary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly-assimilation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operational forecasting centres are currently developing data assimilation systems for coupled atmosphere-ocean models. Strongly coupled assimilation, in which a single assimilation system is applied to a coupled model, presents significant technical and scientific challenges. Hence weakly coupled assimilation systems are being developed as a first step, in which the coupled model is used to compare the current state estimate with observations, but corrections to the atmosphere and ocean initial conditions are then calculated independently. In this paper we provide a comprehensive description of the different coupled assimilation methodologies in the context of four dimensional variational assimilation (4D-Var) and use an idealised framework to assess the expected benefits of moving towards coupled data assimilation. We implement an incremental 4D-Var system within an idealised single column atmosphere-ocean model. The system has the capability to run both strongly and weakly coupled assimilations as well as uncoupled atmosphere or ocean only assimilations, thus allowing a systematic comparison of the different strategies for treating the coupled data assimilation problem. We present results from a series of identical twin experiments devised to investigate the behaviour and sensitivities of the different approaches. Overall, our study demonstrates the potential benefits that may be expected from coupled data assimilation. When compared to uncoupled initialisation, coupled assimilation is able to produce more balanced initial analysis fields, thus reducing initialisation shock and its impact on the subsequent forecast. Single observation experiments demonstrate how coupled assimilation systems are able to pass information between the atmosphere and ocean and therefore use near-surface data to greater effect. We show that much of this benefit may also be gained from a weakly coupled assimilation system, but that this can be sensitive to the parameters used in the assimilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study has investigated serial (temporal) clustering of extra-tropical cyclones simulated by 17 climate models that participated in CMIP5. Clustering was estimated by calculating the dispersion (ratio of variance to mean) of 30 December-February counts of Atlantic storm tracks passing nearby each grid point. Results from single historical simulations of 1975-2005 were compared to those from historical ERA40 reanalyses from 1958-2001 ERA40 and single future model projections of 2069-2099 under the RCP4.5 climate change scenario. Models were generally able to capture the broad features in reanalyses reported previously: underdispersion/regularity (i.e. variance less than mean) in the western core of the Atlantic storm track surrounded by overdispersion/clustering (i.e. variance greater than mean) to the north and south and over western Europe. Regression of counts onto North Atlantic Oscillation (NAO) indices revealed that much of the overdispersion in the historical reanalyses and model simulations can be accounted for by NAO variability. Future changes in dispersion were generally found to be small and not consistent across models. The overdispersion statistic, for any 30 year sample, is prone to large amounts of sampling uncertainty that obscures the climate change signal. For example, the projected increase in dispersion for storm counts near London in the CNRMCM5 model is 0.1 compared to a standard deviation of 0.25. Projected changes in the mean and variance of NAO are insufficient to create changes in overdispersion that are discernible above natural sampling variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We utilized an ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to estimate carbon fluxes of gross primary productivity and total ecosystem respiration of a high-elevation coniferous forest. The data assimilation routine incorporated aggregated twice-daily measurements of the net ecosystem exchange of CO2 (NEE) and satellite-based reflectance measurements of the fraction of absorbed photosynthetically active radiation (fAPAR) on an eight-day timescale. From these data we conducted a data assimilation experiment with fifteen different combinations of available data using twice-daily NEE, aggregated annual NEE, eight-day f AP AR, and average annual fAPAR. Model parameters were conditioned on three years of NEE and fAPAR data and results were evaluated to determine the information content from the different combinations of data streams. Across the data assimilation experiments conducted, model selection metrics such as the Bayesian Information Criterion and Deviance Information Criterion obtained minimum values when assimilating average annual fAPAR and twice-daily NEE data. Application of wavelet coherence analyses showed higher correlations between measured and modeled fAPAR on longer timescales ranging from 9 to 12 months. There were strong correlations between measured and modeled NEE (R2, coefficient of determination, 0.86), but correlations between measured and modeled eight-day fAPAR were quite poor (R2 = −0.94). We conclude that this inability to determine fAPAR on eight-day timescale would improve with the considerations of the radiative transfer through the plant canopy. Modeled fluxes when assimilating average annual fAPAR and annual NEE were comparable to corresponding results when assimilating twice-daily NEE, albeit at a greater uncertainty. Our results support the conclusion that for this coniferous forest twice-daily NEE data are a critical measurement stream for the data assimilation. The results from this modeling exercise indicate that for this coniferous forest, average annuals for satellite-based fAPAR measurements paired with annual NEE estimates may provide spatial detail to components of ecosystem carbon fluxes in proximity of eddy covariance towers. Inclusion of other independent data streams in the assimilation will also reduce uncertainty on modeled values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of a particle filter for data assimilation with a full scale coupled ocean–atmosphere general circulation model. Synthetic twin experiments are performed to assess the performance of the equivalent weights filter in such a high-dimensional system. Artificial 2-dimensional sea surface temperature fields are used as observational data every day. Results are presented for different values of the free parameters in the method. Measures of the performance of the filter are root mean square errors, trajectories of individual variables in the model and rank histograms. Filter degeneracy is not observed and the performance of the filter is shown to depend on the ability to keep maximum spread in the ensemble.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations through the minimisation of a least-squares objective function, which is constrained by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR) in this thesis as it assumes the model is perfect. Relaxing this assumption gives rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation problem with more degrees of freedom. We consider two wc4DVAR formulations in this thesis, the model error formulation and state estimation formulation. The 4DVAR objective function is traditionally solved using gradient-based iterative methods. The principle method used in Numerical Weather Prediction today is the Gauss-Newton approach. This method introduces a linearised `inner-loop' objective function, which upon convergence, updates the solution of the non-linear `outer-loop' objective function. This requires many evaluations of the objective function and its gradient, which emphasises the importance of the Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the degree of convexity of the objective function, while also indicating the difficulty one may encounter while iterative solving 4DVAR. The condition number of the Hessian is an appropriate measure for the sensitivity of the problem to input data. The condition number can also indicate the rate of convergence and solution accuracy of the minimisation algorithm. This thesis investigates the sensitivity of the solution process minimising both wc4DVAR objective functions to the internal assimilation parameters composing the problem. We gain insight into these sensitivities by bounding the condition number of the Hessians of both objective functions. We also precondition the model error objective function and show improved convergence. We show that both formulations' sensitivities are related to error variance balance, assimilation window length and correlation length-scales using the bounds. We further demonstrate this through numerical experiments on the condition number and data assimilation experiments using linear and non-linear chaotic toy models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predictability of high impact weather events on multiple time scales is a crucial issue both in scientific and socio-economic terms. In this study, a statistical-dynamical downscaling (SDD) approach is applied to an ensemble of decadal hindcasts obtained with the Max-Planck-Institute Earth System Model (MPI-ESM) to estimate the decadal predictability of peak wind speeds (as a proxy for gusts) over Europe. Yearly initialized decadal ensemble simulations with ten members are investigated for the period 1979–2005. The SDD approach is trained with COSMO-CLM regional climate model simulations and ERA-Interim reanalysis data and applied to the MPI-ESM hindcasts. The simulations for the period 1990–1993, which was characterized by several windstorm clusters, are analyzed in detail. The anomalies of the 95 % peak wind quantile of the MPI-ESM hindcasts are in line with the positive anomalies in reanalysis data for this period. To evaluate both the skill of the decadal predictability system and the added value of the downscaling approach, quantile verification skill scores are calculated for both the MPI-ESM large-scale wind speeds and the SDD simulated regional peak winds. Skill scores are predominantly positive for the decadal predictability system, with the highest values for short lead times and for (peak) wind speeds equal or above the 75 % quantile. This provides evidence that the analyzed hindcasts and the downscaling technique are suitable for estimating wind and peak wind speeds over Central Europe on decadal time scales. The skill scores for SDD simulated peak winds are slightly lower than those for large-scale wind speeds. This behavior can be largely attributed to the fact that peak winds are a proxy for gusts, and thus have a higher variability than wind speeds. The introduced cost-efficient downscaling technique has the advantage of estimating not only wind speeds but also estimates peak winds (a proxy for gusts) and can be easily applied to large ensemble datasets like operational decadal prediction systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 Global Climate Models (GCMs) produce a wide range of simulated SIT in the historical period (1979–2014) and exhibit various biases when compared with the Pan-Arctic Ice Ocean Modelling and Assimilation System (PIOMAS) sea ice reanalysis. We present a new method to constrain such GCM simulations of SIT via a statistical bias correction technique. The bias correction successfully constrains the spatial SIT distribution and temporal variability in the CMIP5 projections whilst retaining the climatic fluctuations from individual ensemble members. The bias correction acts to reduce the spread in projections of SIT and reveals the significant contributions of climate internal variability in the first half of the century and of scenario uncertainty from mid-century onwards. The projected date of ice-free conditions in the Arctic under the RCP8.5 high emission scenario occurs in the 2050s, which is a decade earlier than without the bias correction, with potentially significant implications for stakeholders in the Arctic such as the shipping industry. The bias correction methodology developed could be similarly applied to other variables to reduce spread in climate projections more generally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regional climate modelling system PRECIS, was run at 25 km horizontal resolution for 150 years (1949-2099) using global driving data from a five member perturbed physics ensemble (based on the coupled global climate model HadCM3). Output from these simulations was used to investigate projected changes in tropical cyclones (TCs) over Vietnam and the South China Sea due to global warming (under SRES scenario A1B). Thirty year climatological mean periods were used to look at projected changes in future (2069-2098) TCs compared to a 1961-1990 baseline. Present day results were compared qualitatively with IBTrACS observations and found to be reasonably realistic. Future projections show a 20-44 % decrease in TC frequency, although the spatial patterns of change differ between the ensemble members, and an increase of 27-53 % in the amount of TC associated precipitation. No statistically significant changes in TC intensity were found, however, the occurrence of more intense TCs (defined as those with a maximum 10 m wind speed > 35 m/s) was found to increase by 3-9 %. Projected increases in TC associated precipitation are likely caused by increased evaporation and availability of atmospheric water vapour, due to increased sea surface and atmospheric temperature. The mechanisms behind the projected changes in TC frequency are difficult to link explicitly; changes are most likely due to the combination of increased static stability, increased vertical wind shear and decreased upward motion, which suggest a decrease in the tropical overturning circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study has explored the prediction errors of tropical cyclones (TCs) in the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) for the Northern Hemisphere summer period for five recent years. Results for the EPS are contrasted with those for the higher-resolution deterministic forecasts. Various metrics of location and intensity errors are considered and contrasted for verification based on IBTrACS and the numerical weather prediction (NWP) analysis (NWPa). Motivated by the aim of exploring extended TC life cycles, location and intensity measures are introduced based on lower-tropospheric vorticity, which is contrasted with traditional verification metrics. Results show that location errors are almost identical when verified against IBTrACS or the NWPa. However, intensity in the form of the mean sea level pressure (MSLP) minima and 10-m wind speed maxima is significantly underpredicted relative to IBTrACS. Using the NWPa for verification results in much better consistency between the different intensity error metrics and indicates that the lower-tropospheric vorticity provides a good indication of vortex strength, with error results showing similar relationships to those based on MSLP and 10-m wind speeds for the different forecast types. The interannual variation in forecast errors are discussed in relation to changes in the forecast and NWPa system and variations in forecast errors between different ocean basins are discussed in terms of the propagation characteristics of the TCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A truly variance-minimizing filter is introduced and its per for mance is demonstrated with the Korteweg– DeV ries (KdV) equation and with a multilayer quasigeostrophic model of the ocean area around South Africa. It is recalled that Kalman-like filters are not variance minimizing for nonlinear model dynamics and that four - dimensional variational data assimilation (4DV AR)-like methods relying on per fect model dynamics have dif- ficulty with providing error estimates. The new method does not have these drawbacks. In fact, it combines advantages from both methods in that it does provide error estimates while automatically having balanced states after analysis, without extra computations. It is based on ensemble or Monte Carlo integrations to simulate the probability density of the model evolution. When obser vations are available, the so-called importance resampling algorithm is applied. From Bayes’ s theorem it follows that each ensemble member receives a new weight dependent on its ‘ ‘distance’ ’ t o the obser vations. Because the weights are strongly var ying, a resampling of the ensemble is necessar y. This resampling is done such that members with high weights are duplicated according to their weights, while low-weight members are largely ignored. In passing, it is noted that data assimilation is not an inverse problem by nature, although it can be for mulated that way . Also, it is shown that the posterior variance can be larger than the prior if the usual Gaussian framework is set aside. However , i n the examples presented here, the entropy of the probability densities is decreasing. The application to the ocean area around South Africa, gover ned by strongly nonlinear dynamics, shows that the method is working satisfactorily . The strong and weak points of the method are discussed and possible improvements are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question is addressed whether using unbalanced updates in ocean-data assimilation schemes for seasonal forecasting systems can result in a relatively poor simulation of zonal currents. An assimilation scheme, where temperature observations are used for updating only the density field, is compared to a scheme where updates of density field and zonal velocities are related by geostrophic balance. This is done for an equatorial linear shallow-water model. It is found that equatorial zonal velocities can be detoriated if velocity is not updated in the assimilation procedure. Adding balanced updates to the zonal velocity is shown to be a simple remedy for the shallow-water model. Next, optimal interpolation (OI) schemes with balanced updates of the zonal velocity are implemented in two ocean general circulation models. First tests indicate a beneficial impact on equatorial upper-ocean zonal currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A smoother introduced earlier by van Leeuwen and Evensen is applied to a problem in which real obser vations are used in an area with strongly nonlinear dynamics. The derivation is new , but it resembles an earlier derivation by van Leeuwen and Evensen. Again a Bayesian view is taken in which the prior probability density of the model and the probability density of the obser vations are combined to for m a posterior density . The mean and the covariance of this density give the variance-minimizing model evolution and its errors. The assumption is made that the prior probability density is a Gaussian, leading to a linear update equation. Critical evaluation shows when the assumption is justified. This also sheds light on why Kalman filters, in which the same ap- proximation is made, work for nonlinear models. By reference to the derivation, the impact of model and obser vational biases on the equations is discussed, and it is shown that Bayes’ s for mulation can still be used. A practical advantage of the ensemble smoother is that no adjoint equations have to be integrated and that error estimates are easily obtained. The present application shows that for process studies a smoother will give superior results compared to a filter , not only owing to the smooth transitions at obser vation points, but also because the origin of features can be followed back in time. Also its preference over a strong-constraint method is highlighted. Further more, it is argued that the proposed smoother is more efficient than gradient descent methods or than the representer method when error estimates are taken into account

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is for mally proved that the general smoother for nonlinear dynamics can be for mulated as a sequential method, that is, obser vations can be assimilated sequentially during a for ward integration. The general filter can be derived from the smoother and it is shown that the general smoother and filter solutions at the final time become identical, as is expected from linear theor y. Then, a new smoother algorithm based on ensemble statistics is presented and examined in an example with the Lorenz equations. The new smoother can be computed as a sequential algorithm using only for ward-in-time model integrations. It bears a strong resemblance with the ensemble Kalman filter . The difference is that ever y time a new dataset is available during the for ward integration, an analysis is computed for all previous times up to this time. Thus, the first guess for the smoother is the ensemble Kalman filter solution, and the smoother estimate provides an improvement of this, as one would expect a smoother to do. The method is demonstrated in this paper in an intercomparison with the ensemble Kalman filter and the ensemble smoother introduced by van Leeuwen and Evensen, and it is shown to be superior in an application with the Lorenz equations. Finally , a discussion is given regarding the properties of the analysis schemes when strongly non-Gaussian distributions are used. It is shown that in these cases more sophisticated analysis schemes based on Bayesian statistics must be used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses an important issue related to the implementation and interpretation of the analysis scheme in the ensemble Kalman filter . I t i s shown that the obser vations must be treated as random variables at the analysis steps. That is, one should add random perturbations with the correct statistics to the obser vations and generate an ensemble of obser vations that then is used in updating the ensemble of model states. T raditionally , this has not been done in previous applications of the ensemble Kalman filter and, as will be shown, this has resulted in an updated ensemble with a variance that is too low . This simple modification of the analysis scheme results in a completely consistent approach if the covariance of the ensemble of model states is interpreted as the prediction error covariance, and there are no further requirements on the ensemble Kalman filter method, except for the use of an ensemble of sufficient size. Thus, there is a unique correspondence between the error statistics from the ensemble Kalman filter and the standard Kalman filter approach