987 resultados para CONSCIOUS FEMALE RATS
Resumo:
We determined the effects of losartan and CGP42112A (selective ligands of the AT1 and AT2 angiotensin receptors, respectively) and salarasin (a relatively nonselective angiotensin receptor antagonist) on urinary volume and urinary sodium and potassium excretion induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of conscious rats. Both the AT1 and AT2 ligands and salarasin administered in the presence of ANG II elicited a concentration-dependent inhibition of urine excretion, but losartan inhibited only 75% of this response. The IC50 for salarasin, CGP42112A, and losartan was 0.01, 0.05, and 6 nM, respectively. Previous treatment with saralasin, CGP42112A and losartan competitively antagonized the natriuretic responses to PVN administration of ANG II, and the IC50 values were 0.09, 0.48, and 10 nM, respectively. The maximum response to losartan was 65% of that obtained with saralasin. Pretreatment with saralasin, losartan, and CGP42112A injected into the PVN caused shifts to the right of the concentration-response curves, but the losartan concentrations were disproportionately greater compared with salarasin or CGP42112A. The IC50 values were 0.06, 0.5, and 7.0 for salarasin, CGP42112A, and losartan, respectively. These results suggest that both AT1 and AT2 receptor subtypes in the PVN are involved in ANG II-related urine, sodium, and potassium excretion, and that the inhibitory responses to AT2 blockade are predominant. Copyright (C) 1999 Elsevier Science B.V.
Resumo:
Microinjection of S-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 ± 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 ± 7% and 17 ± 9% (5 and 15 min after pretreatment, P < 0.05 compared with before pretreatment). Pretreatment with L-NAME reduced AMPA-induced bradycardia from 122 ± 40 to 92 ± 32 beats/min but did not alter the hypertension induced by AMPA (35 ± 5 mmHg before pretreatment, 43 ± 6 mmHg after pretreatment). Control injections with D-NAME did not affect resting values or the response to AMPA. The present study shows that stimulation of AMPA receptors in the NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS. Copyright © 2006 the American Physiological Society.
Resumo:
Reactive oxygen species (ROS) have been shown to modulate neuronal synaptic transmission and may play a role on the autonomic control of the cardiovascular system. In this study we investigated the effects produced by hydrogen peroxide (H 2O 2) injected alone or combined with the anti-oxidant agent N-acetil-l-cysteine (NAC) or catalase into the fourth brain ventricle (4th V) on mean arterial pressure and heart rate of conscious rats. Moreover the involvement of the autonomic nervous system on the cardiovascular responses to H 2O 2 into the 4th V was also investigated. Male Holtzman rats (280-320 g) with a stainless steel cannula implanted into the 4th V and polyethylene cannulas inserted into the femoral artery and vein were used. Injections of H 2O 2 (0.5, 1.0 and 1.5 μmol/0.2 μL, n = 6) into the 4th V produced transient (for 10 min) dose-dependent pressor responses. The 1.0 and 1.5 μmol doses of H 2O 2 also produced a long lasting bradycardia (at least 24 h with the high dose of H 2O 2). Prior injection of N-acetyl-l-cysteine (250 nmol/1 μL/rat) into the 4th V blockade the pressor response and attenuated the bradycardic response to H 2O 2 (1 μmol/0.5 μL/rat, n = 7) into the 4th V. Intravenous (i.v.) atropine methyl bromide (1.0 mg/kg, n = 11) abolished the bradycardia but did not affect the pressor response to H 2O 2. Prazosin hydrochloride (1.0 mg/kg, n = 6) i.v. abolished the pressor response but did not affect the bradycardia. The increase in the catalase activity (500 UEA/1 μL/rat injected into the 4th V) also abolished both, pressor and bradycardic responses to H 2O 2. The results suggest that increased ROS availability into 4th V simultaneously activate sympathetic and parasympathetic outflow inducing pressor and bradycardic responses. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Background: Fluctuations of estradiol and progesterone levels caused by the menstrual cycle worsen asthma symptoms. Conflicting data are reported in literature regarding pro and anti-inflammatory properties of estradiol and progesterone.Methods: Female Wistar rats were ovalbumin (OVA) sensitized 1 day after resection of the ovaries (OVx). Control group consisted of sensitized-rats with intact ovaries (Sham-OVx). Allergic challenge was performed by aerosol (OVA 1%, 15 min) two weeks later. Twenty four hours after challenge, BAL, bone marrow and total blood cells were counted. Lung tissues were used as explants, for expontaneous cytokine secretion in vitro or for immunostaining of E-selectin.Results: We observed an exacerbated cell recruitment into the lungs of OVx rats, reduced blood leukocytes counting and increased the number of bone marrow cells. Estradiol-treated OVx allergic rats reduced, and those treated with progesterone increased, respectively, the number of cells in the BAL and bone marrow. Lungs of OVx allergic rats significantly increased the E-selectin expression, an effect prevented by estradiol but not by progesterone treatment. Systemically, estradiol treatment increased the number of peripheral blood leukocytes in OVx allergic rats when compared to non treated-OVx allergic rats. Cultured-BAL cells of OVx allergic rats released elevated amounts of LTB4 and nitrites while bone marrow cells increased the release of TNF-α and nitrites. Estradiol treatment of OVx allergic rats was associated with a decreased release of TNF-α, IL-10, LTB4 and nitrites by bone marrow cells incubates. In contrast, estradiol caused an increase in IL-10 and NO release by cultured-BAL cells. Progesterone significantly increased TNF- α by cultured BAL cells and bone marrow cells.Conclusions: Data presented here suggest that upon hormonal oscillations the immune sensitization might trigger an allergic lung inflammation whose phenotype is under control of estradiol. Our data could contribute to the understanding of the protective role of estradiol in some cases of asthma symptoms in fertile ans post-menopausal women clinically observed. © 2010 de Oliveira et al; licensee BioMed Central Ltd.
Resumo:
PURPOSE: To present fundamental anatomical aspects and technical skills necessary to urethra and urinary bladder catheterization in female mice and rats. METHODS: Urethral and bladder catheterization has been widely utilized for carcinogenesis and cancer research and still remains very useful in several applications: from toxicological purposes as well as inflammatory and infectious conditions to functional aspects as bladder dynamics and vesicoureteral reflux, among many others. RESULTS: Animal models are in the center of translational research and those involving rodents are the most important nowadays due to several advantages including human reproducibility, easy handling and low cost. CONCLUSIONS: Although technical and anatomical pearls for rodent urethral and bladder access are presented as tackles to the advancement of lower urinary tract preclinical investigation in a broaden sight, restriction to female animals hampers the male microenvironment, demanding future advances.
Resumo:
New Findings: • What is the central question of this study? The main purpose of the present manuscript was to investigate the cardiorespiratory responses to hypoxia or hypercapnia in conscious rats submitted to neuronal blockade of the parafacial region. We clearly showed that the integrity of parafacial region is important for the respiratory responses elicited by peripheral and central chemoreflex activation in freely behavior rats. • What is the main finding and its importance? Since the parafacial region is part of the respiratory rhythm generator, they are essential for postnatal survival, which is probably due to their contribution to chemoreception in conscious rats. The retrotrapezoid nucleus (RTN), located in the parafacial region, contains glutamatergic neurons that express the transcriptor factor Phox2b and that are suggested to be central respiratory chemoreceptors. Studies in anaesthetized animals or in vitro have suggested that RTN neurons are important in the control of breathing by influencing respiratory rate, inspiratory amplitude and active expiration. However, the contribution of these neurons to cardiorespiratory control in conscious rats is not clear. Male Holtzman rats (280-300 g, n= 6-8) with bilateral stainless-steel cannulae implanted into the RTN were used. In conscious rats, the microinjection of the ionotropic glutamatergic agonist NMDA (5 pmol in 50 nl) into the RTN increased respiratory frequency (by 42%), tidal volume (by 21%), ventilation (by 68%), peak expiratory flow (by 24%) and mean arterial pressure (MAP, increased by 16 ± 4, versus saline, 3 ± 2 mmHg). Bilateral inhibition of the RTN neurons with the GABAA agonist muscimol (100 pmol in 50 nl) reduced resting ventilation (52 ± 34, versus saline, 250 ± 56 ml min-1 kg-1 with absolute values) and attenuated the respiratory response to hypercapnia and hypoxia. Muscimol injected into the RTN slightly reduced resting MAP (decreased by 13 ± 7, versus saline, increased by 3 ± 2 mmHg), without changing the effects of hypercapnia or hypoxia on MAP and heart rate. The results suggest that RTN neurons activate facilitatory mechanisms important to the control of ventilation in resting, hypoxic or hypercapnic conditions in conscious rats. © 2012 The Authors. Experimental Physiology © 2012 The Physiological Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
Resumo:
Several biological and clinical studies have suggested that conjugated linoleic acid (CLA) prevents body fat accumulation and increases lean body mass. CLA is available as a concentrated dietary supplement and is purported to provide the aforementioned benefits for people who perform physical activity. This study was conducted to evaluate the effect of a CLA-supplemented diet combined with physical activity on the body composition of Wistar rats. Two groups of Wistar rats of both sexes, between 45 and 60 days old, were fed a diet containing 5.5% soybean oil (control group) or a CLA-supplemented diet (0.5% CLA and 5.0% soybean oil) (test group). Half the rats in both groups were assigned to exercise by running on a treadmill. The biochemical and anatomical body compositions were analyzed. In both groups, CLA had no effect on the dietary consumption or the weight of the liver, heart, and lungs. However, it did influence the overall weight gain of exercised male rats and the chemical and anatomical body composition in exercised and sedentary rats of both sexes. The results confirm that a CLA-supplemented diet with and without physical activity reduced body fat accumulation in rats of both sexes. However, there is no evidence of an increase in the lean body mass of the exercised rats.
Resumo:
The time to reach the maximum response of arterial pressure, heart rate and vascular resistance (hindquarter and mesenteric) was measured in conscious male spontaneously hypertensive (SHR) and normotensive control rats (NCR; Wistar; 18-22 weeks) subjected to electrical stimulation of the aortic depressor nerve (ADN) under thiopental anesthesia. The parameters of stimulation were 1 mA intensity and 2 ms pulse length applied for 5 s, using frequencies of 10, 30, and 90 Hz. The time to reach the hemodynamic responses at different frequencies of ADN stimulation was similar for SHR (N = 15) and NCR (N = 14); hypotension = NCR (4194 +/- 336 to 3695 +/- 463 ms) vs SHR ( 3475 +/- 354 to 4494 +/- 300 ms); bradycardia = NCR (1618 +/- 152 to 1358 +/- 185 ms) vs SHR (1911 +/- 323 to 1852 +/- 431 ms), and the fall in hindquarter vascular resistance = NCR (6054 +/- 486 to 6550 +/- 847 ms) vs SHR (4849 +/- 918 to 4926 +/- 646 ms); mesenteric = NCR (5574 +/- 790 to 5752 +/- 539 ms) vs SHR (5638 +/- 648 to 6777 +/- 624 ms). In addition, ADN stimulation produced baroreflex responses characterized by a faster cardiac effect followed by a vascular effect, which together contributed to the decrease in arterial pressure. Therefore, the results indicate that there is no alteration in the conduction of the electrical impulse after the site of baroreceptor mechanical transduction in the baroreflex pathway (central and/or efferent) in conscious SHR compared to NCR.
Resumo:
We evaluated the involvement of paraventricular nucleus (PVN) in the changes in mean arterial pressure (MAP) and heart rate (HR) during an orthostatic challenge (head up tilt, HUT). Adult male Wistar rats, instrumented with guide cannulas to PVN and artery and vein catheters were submitted to MAP and HR recording in conscious state and induction of HUT. The HUT induced an increase in MAP and HR and the pretreatment with prazosin and atenolol blocked these effects. After inhibition of neurotransmission with cobalt chloride (1 mM/100 nl) into the PVN the HR parameters did not change, however we observed a decrease in MAP during HUT. Our data suggest the involvement of PVN in the brain circuitry involved in cardiovascular adjustment during orthostatic challenges. (C) 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Resumo:
Background: Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods: We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 mu L) injection into the 4th V. Results: Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion: We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.
Resumo:
Clinical and experimental evidence suggest that estrogens have a major impact on cognition, presenting neurotrophic and neuroprotective actions in regions involved in such function. In opposite, some studies indicate that certain hormone therapy regimens may provoke detrimental effects over female cognitive and neurological function. Therefore, we decided to investigate how estrogen treatment would influence cognition and depression in different ages. For that matter, this study assessed the effects of chronic 17 beta-estradiol treatment over cognition and depressive-like behaviors of young (3 months old), adult (7 months old) and middle-aged (12 months old) reproductive female Wistar rats. These functions were also correlated with alterations in the serotonergic system, as well as hippocampal BDNF. 17 beta-Estradiol treatment did not influence animals' locomotor activity and exploratory behavior, but it was able to improve the performance of adult and middle-aged rats in the Morris water maze, the latter being more responsive to the treatment. Young and adult rats displayed decreased immobility time in the forced swimming test, suggesting an effect of 17 beta-estradiol also over such depressive-like behavior. This same test revealed increased swimming behavior, triggered by serotonergic pathway, in adult rats. Neurochemical evaluations indicated that 17 beta-estradiol treatment was able to increase serotonin turnover rate in the hippocampus of adult rats. Interestingly, estrogen treatment increased BDNF levels from animals of all ages. These findings support the notion that the beneficial effects of 17 beta-estradiol over spatial reference memory and depressive-like behavior are evident only when hormone therapy occurs at early ages and early stages of hormonal decline. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: The sural nerve has been widely investigated in experimental models of neuropathies but information about its involvement in hypertension was not yet explored. The aim of the present study was to compare the morphological and morphometric aspects of different segments of the sural nerve in male and female spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Rats aged 20 weeks (N = 6 in each group) were investigated. After arterial pressure and heart rate recordings in anesthetized animals, right and left sural nerves were removed and prepared for epoxy resin embedding and light microscopy. Morphometric analysis was performed with the aid of computer software, and took into consideration the fascicle area and diameter, as well as myelinated fiber number, density, area and diameter. Results: Significant differences were observed for the myelinated fiber number and density, comparing different genders of WKY and SHR. Also, significant differences for the morphological (thickening of the endoneural blood vessel walls and lumen reduction) and morphometric (myelinated fibers diameter and G ratio) parameters of myelinated fibers were identified. Morphological exam of the myelinated fibers suggested the presence of a neuropathy due to hypertension in both SHR genders. Conclusions: These results indicate that hypertension altered important morphometric parameters related to nerve conduction of sural nerve in hypertensive animals. Moreover the comparison between males and females of WKY and SHR allows the conclusion that the morphological and morphometric parameters of sural nerve are not gender related. The morphometric approach confirmed the presence of neuropathy, mainly associated to the small myelinated fibers. In conclusion, the present study collected evidences that the high blood pressure in SHR is affecting the sural nerve myelinated fibers.
Resumo:
Abstract Background Neonatal STZ treatment induces a state of mild hyperglycemia in adult rats that disrupts metabolism and maternal/fetal interactions. The aim of this study was investigate the effect of neonatal STZ treatment on the physical development, behavior, and reproductive function of female Wistar rats from infancy to adulthood. Methods At birth, litters were assigned either to a Control (subcutaneous (s.c.) citrate buffer, n = 10) or STZ group, (streptozotocin (STZ) - 100 mg/kg-sc, n = 6). Blood glucose levels were measured on postnatal days (PND) 35, 84 and 120. In Experiment 1 body weight, length and the appearance of developmental milestones such as eye and vaginal opening were monitored. To assess the relative contribution of the initial and long term effects of STZ treatment this group was subdivided based on blood glucose levels recorded on PND 120: STZ hyperglycemic (between 120 and 300 mg/dl) and STZ normoglycemic (under 120 mg/dl). Behavioral activity was assessed in an open field on PND 21 and 75. In Experiment 2 estrous cyclicity, sexual behavior and circulating gonadotropin, ovarian steroid, and insulin levels were compared between control and STZ-hyperglycemic rats. In all measures the litter was the experimental unit. Parametric data were analyzed using one-way or, where appropriate, two-way ANOVA and significant effects were investigated using Tukey’s post hoc test. Fisher’s exact test was employed when data did not satisfy the assumption of normality e.g. presence of urine and fecal boli on the open field between groups. Statistical significance was set at p < 0.05 for all data. Results As expected neonatal STZ treatment caused hyperglycemia and hypoinsulinemia in adulthood. STZ-treated pups also showed a temporary reduction in growth rate that probably reflected the early loss of circulating insulin. Hyperglycemic rats also exhibited a reduction in locomotor and exploratory behavior in the open field. Mild hyperglycemia did not impair gonadotropin levels or estrous cylicity but ovarian steroid concentrations were altered. Conclusions In female Wistar rats, neonatal STZ treatment impairs growth in infancy and results in mild hyperglycemia/hypoinsulinemia in adulthood that is associated with changes in the response to a novel environment and altered ovarian steroid hormone levels.