923 resultados para CEREBRAL ENERGY-METABOLISM
Resumo:
We previously showed that exposure of 3D organotypic rat brain cell cultures to 1mM 2-methylcitrate (2-MCA) or 3-hydroxyglutarate (3- OHGA) every 12h over three days (DIV11-DIV14) results in ammonium accumulation and cell death. The aim of this study was to define the time course (every 24h) of the observed effects. Ammonium in culture medium already increased at DIV12 staying stable on the following days under 3-OHGA exposure, while it increased consecutively up to much higher levels under 2-MCA exposure. Lactate increase and glucose decrease were observed from DIV13 and DIV14, respectively. We conclude that ammonium accumulation precedes alterations of energy metabolism. As observed by immunohistochemistry glial cells were the predominant dying cells. Immunoblotting and immunohistochemistry with cell death specific markers (caspase-3, alpha-fodrin, LC3) showed that 2-MCA exposure significantly increased apoptosis on DIV14, but did not alter autophagy or necrosis. In contrast, 3-OHGA exposure substantially increased necrosis already from DIV13, while no change was observed for apoptosis and autophagy. In conclusion, ammonium accumulation, secondary disturbance of energy metabolism and glial cell death are involved in the neuropathogenesis ofmethylmalonic aciduria and glutaric aciduria type I. Interestingly, brain cells are dying by necrosis under 3-OHGA exposure and by apoptosis under 2-MCA exposure.
Resumo:
The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.
Resumo:
BACKGROUND: Black women are at greater risk of obesity than are white women, perhaps because of their lower levels of physical activity. OBJECTIVE: We compared free-living activity energy expenditure (AEE) in sedentary white and black women (in overweight and normal-weight states) and in never-overweight control subjects. DESIGN: Subjects included 46 women (23 white, 23 black) studied while overweight and after reaching a normal weight and 38 female control subjects (23 white, 15 black). Diet, without exercise training, resulted in a mean weight loss of 13 kg and a body mass index (in kg/m(2)) < 25. Body composition, sleeping energy expenditure, free-living total energy expenditure, and the energy cost of activity and aerobic capacity were assessed before and after weight loss under 4-wk, diet-controlled, weight-stable conditions and in the control subjects. AEE was defined as above-sleep energy expenditure. RESULTS: No significant racial differences in body composition, before or after weight loss, were found. After weight loss, AEE and aerobic capacity increased in the white women and decreased in the black women (P < 0.05 and P < 0.02, respectively). After weight loss, but not before, the white women had a significantly higher mean AEE than did the black women (2448 +/- 979 and 1728 +/- 1373 kJ/d, respectively; P < 0.05), approximating AEEs in the white (2314 +/- 1105) and black (2310 +/- 1251) control subjects. CONCLUSIONS: Relative to the responses of the white women to diet-induced weight loss, the black women became less fit and less physically active. Induction of a normal body weight in overweight black women appeared to produce a more obesity-prone state, favoring weight relapse.
Resumo:
The monocarboxylate transporter MCT4 is a proton-linked carrier particularly important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is exclusively expressed by astrocytes. Surprisingly, MCT4 expression in primary cultures of mouse cortical astrocytes is conspicuously low, suggesting that an external, nonastrocytic signal is necessary to obtain the observed pattern of expression in vivo. Here, we demonstrate that nitric oxide (NO), delivered by various NO donors, time- and dose-dependently induces MCT4 expression in cultured cortical astrocytes both at the mRNA and protein levels. In contrast, NO does not enhance the expression of MCT1, the other astrocytic monocarboxylate transporter. The transcriptional effect of NO is not mediated by a cGMP-dependent mechanism as shown by the absence of effect of a cGMP analog or of a selective guanylate cyclase inhibitor. NO causes an increase in astrocytic lactate transport capacity which requires the enhancement of MCT4 expression as both are prevented by the use of a specific siRNA against MCT4. In addition, cumulated lactate release by astrocytes over a period of 24 h was also enhanced by NO treatment. Our data suggest that NO represents a putative intercellular signal to control MCT4 expression in astrocytes and in doing so, to facilitate lactate transfer to other surrounding cell types in the central nervous system. (C) 2011 Wiley-Liss, Inc.
Resumo:
Diabetic peripheral neuropathy (DPN) is a common complication affecting more than one third of diabetes mellitus (DM) patients. Although all cellular components participating in peripheral nerve function are exposed to and affected by the metabolic consequences of DM, nodal regions, areas of intense interactions between Schwann cells and axons, may be particularly sensitive to DM-induced alterations. Nodes are enriched in insulin receptors, glucose transporters, Na(+) and K(+) channels, and mitochondria, all implicated in the development and progression of DPN. Latest results particularly reinforce the idea that changes in ion-channel function and energy metabolism, both of which depend on axon-glia crosstalk, are among the important contributors to DPN. These insights provide a basis for new therapeutic approaches aimed at delaying or reversing DPN.
Resumo:
OBJECTIVE: To assess the effects, on food intake, body weight and body composition, of compliance to advice aiming at increasing the carbohydrate to fat ratio of the everyday diet without imposing voluntary restriction on the amount of food consumed. DESIGN: Eight moderately overweight women (body mass index > 27 kg/m2, relative body fat mass > 30%) received dietary advice during a 2 month period. Additionally, each evening the subjects had to consume a meal artificially enriched with 13C-glucose in order to assess their compliance from the 13CO2 enrichment in expired air. MEASUREMENTS: Dietary intakes, body weight, body composition and individual compliance. RESULTS: The energy derived from fat decreased from 44 +/- 1% to 31 +/- 1% and the proportion of carbohydrate increased from 38 +/- 2% to 50 +/- 1%, whereas the absolute carbohydrate intake remained constant (182 +/- 18 g/d). Energy intake decreased by 1569 +/- 520 kJ/d. There was a net loss of fat mass (1.7 +/- 0.7 kg, P = 0.016) with fat free mass maintenance. Dietary compliance ranged from 20 to 93% (mean: 60 +/- 8%) and was positively correlated to the loss of body fat mass. CONCLUSION: Advice aiming at increasing diet's carbohydrate to fat ratio induces a loss of fat mass with fat-free mass maintenance.
Resumo:
A critical issue in brain energy metabolism is whether lactate produced within the brain by astrocytes is taken up and metabolized by neurons upon activation. Although there is ample evidence that neurons can efficiently use lactate as an energy substrate, at least in vitro, few experimental data exist to indicate that it is indeed the case in vivo. To address this question, we used a modeling approach to determine which mechanisms are necessary to explain typical brain lactate kinetics observed upon activation. On the basis of a previously validated model that takes into account the compartmentalization of energy metabolism, we developed a mathematical model of brain lactate kinetics, which was applied to published data describing the changes in extracellular lactate levels upon activation. Results show that the initial dip in the extracellular lactate concentration observed at the onset of stimulation can only be satisfactorily explained by a rapid uptake within an intraparenchymal cellular compartment. In contrast, neither blood flow increase, nor extracellular pH variation can be major causes of the lactate initial dip, whereas tissue lactate diffusion only tends to reduce its amplitude. The kinetic properties of monocarboxylate transporter isoforms strongly suggest that neurons represent the most likely compartment for activation-induced lactate uptake and that neuronal lactate utilization occurring early after activation onset is responsible for the initial dip in brain lactate levels observed in both animals and humans.
Resumo:
Seven elderly male subjects (69 +/- 3 yr, 67.8 +/- 9.2 kg, 24.5 +/- 3.6% body fat) lived for 12 consecutive weeks in a metabolic unit and maintained their weight with two different diets fed for 6 weeks each: Diet A, consisted of their habitual protein intake as determined on the outside by a dietary record (mean +/- SD, 1.12 +/- 0.22 g/kg d). Diet B was an isocaloric diet with reduced protein intake (70 mgN/kg d, i.e., 0.44 g protein/kg d) at the level of physiological protein requirement [7]. After 3 weeks on each diet, the thermogenic response to single meals A and B containing 38% of weight maintenance energy for each subject (731-994 kcal) was studied by indirect calorimetry under two situations: (1) at rest over a 4 hr period and (2) during graded exercise on a bicycle ergometer at four stepwise workloads (0,80, 200, and 300 kg/min). A postabsorptive control exercise was also performed in order to assess the net effect of the meal during exercise. Eating alone increased the energy expenditure by +0.18 +/- 0.07 kcal/min with meal A and +0.13 +/- 0.06 kcal/min with meal B. There was a positive correlation (r = 0.84, p less than 0.01) between the % energy derived from protein and the thermogenic response expressed as % of the energy content of test meal. Exercise failed to influence the thermogenic response to meals since the overall net increase in energy expenditure induced by the meals while exercising was not different from that obtained at rest: +0.22 +/- 0.17 kcal/min and +0.15 +/- 0.13 kcal/min with meal A and meal B, respectively. This study failed to show any interaction between exercise and postprandial thermogenesis in elderly individuals.
Resumo:
The thermogenic response to a 100 g oral glucose load was studied by indirect calorimetry in 13 older persons (age range, 38-68 years) and compared with that of 16 young matched controls of similar body weight (age range, 19-30 years). The glucose-induced thermogenesis measured over 180 min and expressed as a per cent of the energy content of the glucose load was found to be reduced in the older subjects, i.e., 5.8 +/- 0.3 per cent vs 8.6 +/- 0.7 per cent, P less than 0.002). This was also accompanied by a significant decrease in the glucose oxidation rate when averaged over the same three-hour period following the glucose load, i.e., 153 mg/min vs 213 mg/min in the control subjects (P less than 0.001) despite a similar time course of glycemia. This study suggests that the thermogenic response to an oral glucose load is blunted in older people, and this may represent an additional factor that contributes to the decreased energy requirement with age and therefore to the increased propensity to obesity if energy intake is not adjusted.
Resumo:
The peroxisome proliferator-activated receptors (PPARs) are members of the steroid/thyroid nuclear receptor superfamily of ligand-activated transcription factors. To date, three isotypes have been identified, alpha, beta and gamma, encoded by three different genes. The alpha isotype is expressed at high levels in the liver where it has a role in lipid oxidation. Its expression and activity follow a diurnal rhythm that parallels the circulating levels of corticosterone in the bloodstream. The gamma isotype on the other hand, is mainly expressed in adipose tissue and has a critical role in adipocyte differentiation and lipid storage. The function of the ubiquitously expressed isotype, PPAR beta, remains to be determined. Besides fulfilling different roles in lipid metabolism, the different PPAR isotypes also have different ligand specificities. A new approach to identify ligands was developed based on the ligand-dependent interaction of PPAR with the recently characterized co-activator SRC-1. This so-called CARLA assay has allowed the identification of fatty acids and eicosanoids as PPAR ligands. Although the evidence clearly links PPAR isotypes to distinct functions, the molecular basis for this isotype-specificity is still unclear. All three isotypes are able to bind the same consensus response element, formed by a direct repeat of two AGGTCA hexamers separated by one base, though with different affinities. We recently demonstrated that besides the core DR-1 element, the 5' flanking sequence should be included in the definition of a PPRE. Interestingly, the presence of this flanking sequence is of particular importance in the context of PPAR alpha binding. Moreover, it reflects the polarity of the PPAR-RXR heterodimer on DNA, with PPAR binding to the 5' half-site and RXR binding to the 3' half-site. This unusual polarity may confer unique properties to the bound heterodimer with respect to ligand binding and interaction with co-activators and corepressors.
Resumo:
The developing cardiovascular system is known to operate normally in a hypoxic environment. However, the functional and ultrastructural recovery of embryonic/fetal hearts subjected to anoxia lasting as long as hypoxia/ischemia performed in adult animal models remains to be investigated. Isolated spontaneously beating hearts from Hamburger-Hamilton developmental stages 14 (14HH), 20HH, 24HH, and 27HH chick embryos were subjected in vitro to 30 or 60 min of anoxia followed by 60 min of reoxygenation. Morphological alterations and apoptosis were assessed histologically and by transmission electron microscopy. Anoxia provoked an initial tachycardia followed by bradycardia leading to complete cardiac arrest, except for in the youngest heart, which kept beating. Complete atrioventricular block appeared after 9.4 +/- 1.1, 1.7 +/- 0.2, and 1.6 +/- 0.3 min at stages 20HH, 24HH, and 27HH, respectively. At reoxygenation, sinoatrial activity resumed first in the form of irregular bursts, and one-to-one atrioventricular conduction resumed after 8, 17, and 35 min at stages 20HH, 24HH, and 27HH, respectively. Ventricular shortening recovered within 30 min except at stage 27HH. After 60 min of anoxia, stage 27HH hearts did not retrieve their baseline activity. Whatever the stage and anoxia duration, nuclear and mitochondrial swelling observed at the end of anoxia were reversible with no apoptosis. Thus the embryonic heart is able to fully recover from anoxia/reoxygenation although its anoxic tolerance declines with age. Changes in cellular homeostatic mechanisms rather than in energy metabolism may account for these developmental variations.
Resumo:
The aim of the study was to explore the effect of an acute dose of creatine (Cr) ingestion on serum Cr and serum creatinine (Crn) concentrations. Sixteen healthy subjects ingested a single dose of Cr (20 g) followed by the measurement of serum Cr and Crn concentration for 3 h up to a maximum of 6 h (n=6). In response to Cr ingestion a large rise in serum Cr concentration was observed (by 50 folds) occurring approximately 2 1/2h after the ingestion (peak value of 2.17 +/- 0.66 mmol x l(-1)). We also found a moderate but significant rise in serum Crn concentration averaging 13 % after 3 h (peak value at 99.5 +/- 10.5 micromol x l(-1)). A dose response curve obtained in two case studies, in whom different doses of Cr were ingested (0, 2.5, 5, 10, 15, 20 g and 0, 10, 20, 30 g), showed that serum Cr concentration as well as the peak time increased linearly with Cr ingestion. In addition, acute Crn ingestion (5 g) resulted in a substantial increase in serum Crn concentration (by 10 folds) but led to a minor rise in serum Cr concentration (by 2 folds). These results suggest that when acute doses of Cr are ingested in humans, the degree of conversion of exogenous Cr to Crn in the stomach and the gut can be considered as negligible following the first 6 h of ingestion. However, further studies are required to explore the prolonged effect of Cr on Crn metabolism.
Resumo:
The metabolic balance method was performed on three men to investigate the fate of large excesses of carbohydrate. Glycogen stores, which were first depleted by diet (3 d, 8.35 +/- 0.27 MJ [1994 +/- 65 kcal] decreasing to 5.70 +/- 1.03 MJ [1361 +/- 247 kcal], 15% protein, 75% fat, 10% carbohydrate) and exercise, were repleted during 7 d carbohydrate overfeeding (11% protein, 3% fat, and 86% carbohydrate) providing 15.25 +/- 1.10 MJ (3642 +/- 263 kcal) on the first day, increasing progressively to 20.64 +/- 1.30 MJ (4930 +/- 311 kcal) on the last day of overfeeding. Glycogen depletion was again accomplished with 2 d of carbohydrate restriction (2.52 MJ/d [602 kcal/d], 85% protein, and 15% fat). Glycogen storage capacity in man is approximately 15 g/kg body weight and can accommodate a gain of approximately 500 g before net lipid synthesis contributes to increasing body fat mass. When the glycogen stores are saturated, massive intakes of carbohydrate are disposed of by high carbohydrate-oxidation rates and substantial de novo lipid synthesis (150 g lipid/d using approximately 475 g CHO/d) without postabsorptive hyperglycemia.
Resumo:
After 13 days of weight maintenance diet (13,720 +/- 620 kJ/day, 40% fat, 15% protein, and 45% carbohydrate), five young men (71.3 +/- 7.1 kg, 181 +/- 8 cm; means +/- SD) were overfed for 9 days at 1.6 times their maintenance requirements (i.e., +8,010 kJ/day). Twenty-four-hour energy expenditure (24-h EE) and basal metabolic rate (BMR) were measured on three occasions, once after 10 days on the weight-maintenance diet and after 2 and 9 days of overfeeding. Physical activity was monitored throughout the study, body composition was measured by underwater weighing, and nitrogen balance was assessed for 3 days during the two experimental periods. Overfeeding caused an increase in body weight averaging 3.2 kg of which 56% was fat as measured by underwater weighing. After 9 days of overfeeding, BMR increased by 622 kJ/day, which could explain one-third of the increase in 24-h EE (2,038 kJ/day); the remainder was due to the thermic effect of food (which increased in proportion with excess energy intake) and the increased cost of physical activity, related to body weight gain. This study shows that approximately one-quarter of the excess energy intake was dissipated through an increase in EE, with 75% being stored in the body. Under our experimental conditions of mixed overfeeding in which body composition measurements were combined with those of energy balance, it was possible to account for all of the energy ingested in excess of maintenance requirements.