914 resultados para CELLULAR IMMUNE RESPONSE


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and Aim: During carcinogenesis, tumours develop multiple mechanisms to evade the immune system and suppress the anti-tumour immune response. Upregulation of Fas Ligand (FasL/CD95L) expression may represent one such mechanism. FasL is a member of the tumour necrosis factor superfamily that triggers apoptotic cell death following ligation to its receptor Fas. Numerous studies have demonstrated upregulated FasL expression in tumor cells, with FasL expression associated with numerous pro-tumorigenic effects. However, little is known about the mechanisms that regulate FasL expression in tumours. The cyclooxgenase (COX) signalling pathway may play an important role in colon carcinogenesis, via the production of prostaglandins, in particular PGE2. PGE2 signals through four different receptor subtypes, EP1 – EP4. Thus, the aim of this study was to investigate the effect of targeting the PGE2-FasL signaling pathway. Results: (i) PGE2 induces FasL expression via the EP1 receptor in colon cancer cells. (ii) Suppression of FasL expression in colon tumour cells in vivo significantly delays and reduces tumour growth. (iii) Blocking EP1 receptor signaling, or suppression of the EP1 receptor in colon tumour cells, reduces tumour growth in vivo. Suppression of tumour growth correlates in part with suppression of FasL expression. (iv) The reduction in tumour growth is associated with an improved anti-tumour immune response. Tumour infiltration by Treg cells and macrophages was reduced, and the cytotoxic activity of CTL generated from splenocytes isolated from these mice increased. Conclusion: 1) Targeting FasL expression by blocking PGE2-EP1 receptor signalling reduces tumour development in vivo. 2) The mechanism is indirect but is associated with an increased anti-tumour immune response. Thus, unraveling the mechanisms regulating FasL expression and the pro-tumorigenic effects of the EP1 receptor may aid in the search for new therapeutic targets against colon cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inflammation is a complex and highly organised immune response to microbes and tissue injury. Recognition of noxious stimuli by pathogen recognition receptor families including Toll-like receptors results in the expression of hundreds of genes that encode cytokines, chemokines, antimicrobials and regulators of inflammation. Regulation of TLR activation responses is controlled by TLR tolerance which induces a global change in the cellular transcriptional expression profile resulting in gene specific suppression and induction of transcription. In this thesis the plasticity of TLR receptor tolerance is investigated using an in vivo, transcriptomics and functional approach to determine the plasticity of TLR tolerance in the regulation of inflammation. Firstly, using mice deficient in the negative regulator of TLR gene transcription, Bcl-3 (Bcl-3-/-) in a model of intestinal inflammation, we investigated the role of Bcl-3 in the regulation of intestinal inflammatory responses. Our data revealed a novel role for Bcl-3 in the regulation of epithelial cell proliferation and regeneration during intestinal inflammation. Furthermore this data revealed that increased Bcl-3 expression contributes to the development of inflammatory bowel disease (IBD). Secondly, we demonstrate that lipopolysaccharide tolerance is transient and recovery from LPS tolerance results in polarisation of macrophages to a previously un-described hybrid state (RM). In addition, we identified that RM cells have a unique transcriptional profile with suppression and induction of genes specific to this polarisation state. Furthermore, using a functional approach to characterise the outcomes of TLR tolerance plasticity, we demonstrate that cytokine transcription is uncoupled from cytokine secretion in macrophages following recovery from LPS tolerance. Here we demonstrate a novel mechanism of regulation of TLR tolerance through suppression of cytokine secretion in macrophages. We show that TNF-α is alternatively trafficked towards a degradative intracellular compartment. These studies demonstrate that TLR tolerance is a complex immunological response with the plasticity of this state playing an important role in the regulation of inflammation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background/Aim: It has been demonstrated that a number of pathologies occur as a result of dysregulation of the immune system. Whilst classically associated with apoptosis, the Fas (CD95) signalling pathway plays a role in inflammation. Studies have demonstrated that Fas activation augments TLR4-mediated MyD88-dependent cytokine production. Studies have also shown that the Fas adapter protein FADD is required for RIG-I-induced IFNβ production. As a similar signalling pathway exists between RIG-I, TLR3 and the MyD88- independent of TLR4, we hypothesised that Fas activation may modulate both TLR3- and TLR4-induced cytokine production. Results: Fas activation reduced poly I:C-induced IFNβ, IL-8, IL-10 and TNFα production whilst augmenting poly I:C-, poly A:U- and Sendai virus-induced IP-10 production. TLR3-, RIG-I- and MDA5-induced IP-10 luciferase activation were inhibited by the Fas adapter protein FADD using overexpression studies. Poly I:C-induced phosphorylation of p-38 and JNK MAPK were reduced by Fas activation. Overexpression of FADD induced AP-1 luciferase activation. Point mutations in the AP-1 binding site enhanced poly I:C-induced IP- 10 production. LPS-induced IL-10, IL-12, IL-8 and TNFα production were enhanced by Fas activation, whilst reducing LPS-induced IFNβ production. Absence of FADD using FADD-/- MEFs resulted in impaired IFNβ production. Overexpression studies using FADD augmented TLR4-, MyD88- and TRIF-induced IFNβ luciferase activation. Overexpression studies also suggested that enhanced TLR4-induced IFNβ production was independent of NFκB activation. Conclusion: Viral-induced IP-10 production is augmented by Fas activation by reducing the phosphorylation of p-38 and JNK MAPKs, modulating AP-1 activation. The Fas adapterprotein FADD is required for TLR4-induced IFNβ production. Studies presented here demonstrate that the Fas signalling pathway can therefore modulate the immune response. Our data demonstrates that this modulatory effect is mediated by its adapter protein FADD, tailoring the immune response by acting as a molecular switch. This ensures the appropriate immune response is mounted, thus preventing an exacerbated immune response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The endoplasmic reticulum stress response, also known as the unfolded protein response (UPR), has been implicated in the normal physiology of immune defense and in several disorders, including diabetes, cancer, and neurodegenerative disease. Here, we show that the apoptotic receptor CED-1 and a network of PQN/ABU proteins involved in a noncanonical UPR response are required for proper defense to pathogen infection in Caenorhabditis elegans. A full-genome microarray analysis indicates that CED-1 functions to activate the expression of pqn/abu genes. We also show that ced-1 and pqn/abu genes are required for the survival of C. elegans exposed to live Salmonella enterica, and that overexpression of pqn/abu genes confers protection against pathogen-mediated killing. The results indicate that unfolded protein response genes, regulated in a CED-1-dependent manner, are involved in the C. elegans immune response to live bacteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the past 2 decades, significant advances in our understanding of the humoral immune response to human immunodeficiency virus type 1 (HIV-1) infection have been made, yet a tremendous amount of work lies ahead. Despite these advances, strategies to reliably induce antibodies that can control HIV-1 infection are still critically needed. However, recent advances in our understanding of the kinetics, specificity, and function of early humoral responses offer alternative new approaches to attain this goal. These results, along with the new broadly neutralizing antibody specificities, the role for other antibody functions, the increased understanding of HIV-1-induced changes to B cell biology, and results from the RV144 "Thai" trial showing potential modest sterilizing protection by nonneutralizing antibody responses, have renewed focus on the humoral system. In this review, recent advances in our understanding of the earliest humoral responses are discussed, highlighting presentations from the meeting on the Biology of Acute HIV Infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clearance of anogenital and oropharyngeal HPV infections is attributed primarily to a successful adaptive immune response. To date, little attention has been paid to the potential role of stochastic cell dynamics in the time it takes to clear an HPV infection. In this study, we combine mechanistic mathematical models at the cellular level with epidemiological data at the population level to disentangle the respective roles of immune capacity and cell dynamics in the clearing mechanism. Our results suggest that chance-in form of the stochastic dynamics of basal stem cells-plays a critical role in the elimination of HPV-infected cell clones. In particular, we find that in immunocompetent adolescents with cervical HPV infections, the immune response may contribute less than 20% to virus clearance-the rest is taken care of by the stochastic proliferation dynamics in the basal layer. In HIV-negative individuals, the contribution of the immune response may be negligible.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hemocytes of Mytilus californianus are of three types: small and large basophils and large granular acidophils. The basophils contain lysosomal enzymes and phagocytose colloidal carbon. Agglutinins for yeast and human A Rh+ve erythrocytes are present in plasma, but are not needed for effective phagocytosis; in vitro both acidophilic and basophilic hemocytes rapidly phagocytose these particles. Plasma proteins, analyzed electrophoretically, are under strong homeostatic control. When Mya arenaria mantle is placed orthotopically on M. californianus mantle, the implant is invaded by host hemocytes in a manner consistent with that described in other published reports on molluscan graft rejection. Steady state is achieved by 26 days postimplant. Second- and third-set implants are rejected more rapidly than are first-set implants, but this is not a specific response. Third-set implants elicit a host cellular response that is more localized than the response to first-set implants. These data do not permit conclusions with respect to memory in these molluscan immune responses, but do imply a qualitative “improvement” in this quasi-immune response of M. californianus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mussels tolerant to seawater pH's that are projected to occur by 2300 due to ocean acidification.•Exposure to pH 6.50 reduced mussel immune response, yet in the absence of a pathogen.•Subsequent pathogenic challenge led to a reversal of immune suppression at pH 6.50.•Study highlights the importance of undertaking multiple stressor exposures.•Shows a need to consider physiological trade-offs and measure responses functionally

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BRCA1 encodes a tumor suppressor gene that is mutated in the germ line of women with a genetic predisposition to breast and ovarian cancer. BRCA1 has been implicated in a number of important cellular functions including DNA damage repair, transcriptional regulation, cell cycle control, and ubiquitination. Using an Affymetrix U95A microarray, IRF-7 was identified as a BRCA1 transcriptional target and was also shown to be synergistically up-regulated by BRCA1 specifically in the presence of IFN-gamma, coincident with the synergistic induction of apoptosis. We show that BRCA1, signal transducer and activator of transcription (STAT)-1, and STAT2 are all required for the induction of IRF-7 following stimulation with IFN-gamma. We also show that the induction of IRF-7 by BRCA1 and IFN-gamma is dependent on the type I IFNs, IFN-alpha and IFN-beta. We show that BRCA1 is required for the up-regulation of STAT1, STAT2, and the type I IFNs in response to IFN-gamma. We show that BRCA1 is localized at the promoters of the molecules involved in type I IFN signaling leading to their up-regulation. Blocking this intermediary type I IFN step using specific antisera shows the requirement for IFN-alpha and IFN-beta in the induction of IRF-7 and apoptosis. Finally, we outline a mechanism for the BRCA1/IFN-gamma regulation of target genes involved in the innate immune response, which is dependent on type I IFN signaling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability of tumour cells to avoid immune destruction (immune escape) and their acquired resistance to anti-cancer drugs constitute important barriers to the successful management of cancer. The interaction between specific molecules on the surface of tumour cells with their corresponding receptors on immune effector cells can result in inhibition of these effector cells, consequently allowing tumour cells to evade the host’s anti-tumour immune response. The interaction of the Programmed Death Ligand 1 (PD-L1) on the surface of tumour cells with the Programmed Death-1 (PD-1) receptor on cytotoxic T lymphocytes leads to inactivation of these immune effectors, and is a specific example of an immune escape mechanism tumour cells use to avoid immune destruction. Clinically, antibodies capable of blocking the PD-1/PD-L1 interaction have demonstrated significant therapeutic benefit, and are currently being used to help bolster patients’ immune response against malignant cells in a variety of cancer types. Here we show that the PD-1/PD-L1 interaction also leads to tumour cell resistance to conventional chemotherapeutic agents. Incubation of PD-L1-expressing human and mouse tumour cells with PD-1-expressing Jurkat T cells or purified recombinant PD-1 resulted in tumour cell resistance to doxorubicin and docetaxel. Interference with the PD-1/PD-L1 interaction using blocking anti-PD-1 or anti-PD-L1 antibody or shRNA-mediated gene silencing resulted in attenuation of PD-1/PD-L1-mediated drug resistance. Moreover, inhibition of the PD-1/PD-L1 signalling axis using anti-PD-1 antibody enhanced the effect of doxorubicin chemotherapy to inhibit 4T1 tumour cell metastasis in an in vivo mouse model of mammary carcinoma. These findings indicate that blockade of the PD-1/PD-L1 axis may be a useful approach to immunosensitize and chemosensitize tumours in cancer patients and provide a rationale for the use of anti-PD-1/PD-L1 antibodies as adjuvants to chemotherapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Periodontitis, a chronic inflammatory disease of the tissues supporting the teeth, is characterized by an exaggerated host immune and inflammatory response to periopathogenic bacteria. Toll-like receptor activation, cytokine network induction, and accumulation of neutrophils at the site of inflammation are important in the host defense against infection. At the same time, induction of immune tolerance and the clearance of neutrophils from the site of infection are essential in the control of the immune response, resolution of inflammation, and prevention of tissue destruction. Using a human monocytic cell line, we demonstrate that Porphyromonas gingivalis lipopolysaccharide (LPS), which is a major etiological factor in periodontal disease, induces only partial immune tolerance, with continued high production of interleukin-8 (IL-8) but diminished secretion of tumor necrosis factor alpha (TNF-) after repeated challenge. This cytokine response has functional consequences for other immune cells involved in the response to infection. Primary human neutrophils incubated with P. gingivalis LPS-treated naïve monocyte supernatant displayed a high migration index and increased apoptosis. In contrast, neutrophils treated with P. gingivalis LPS-tolerized monocyte supernatant showed a high migration index but significantly decreased apoptosis. Overall, these findings suggest that induction of an imbalanced immune tolerance in monocytes by P. gingivalis LPS, which favors continued secretion of IL-8 but decreased TNF- production, may be associated with enhanced migration of neutrophils to the site of infection but also with decreased apoptosis and may play a role in the chronic inflammatory state seen in periodontal disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Diet and health are intimately linked and recent studies have found that caloric restriction can affect immune function. However, when given a choice between diets that differ in their macronutrient composition, pathogen-infected individuals can select a diet that improves their survival, suggesting that the nutritional composition of the diet, as well as its calorie content, can play a role in defence against disease. Moreover, as individuals change their diet when infected, it suggests that a diet that is optimal for growth is not optimal for immunity, leading to trade-offs.
2. Currently, our knowledge of the effects of diet on immunity is limited because previous experiments have manipulated either single nutrients or the calorie content of the diet without considering their interactive effects. By simultaneously manipulating both the diet composition (quality) and its caloric density (quantity), in both naive and immune-challenged insects, we asked how do diet quality and quantity influence an individual's ability to mount an immune response? And to what extent are allocation trade-offs driven by quantity- versus quality-based constraints?
3. We restricted individuals to 20 diets varying in their protein and carbohydrate content and used 3D response surfaces to visualize dietary effects on larval growth and immune traits. Our results show that both constitutive and induced immune responses are not limited by the total quantity of nutrients consumed, but rather different traits respond differently to variation in the ratios of macronutrients (diet quality), and peak in different regions of macronutrient space. The preferred dietary composition therefore represents a compromise between the nutritional requirements of growth and immune responses. We also show that a non-pathogenic immune challenge does not affect diet choice, rather immune-challenged insects modify their allocation of nutrients to improve their immune response.
4. Our results indicate that immune traits are affected by the macronutrient content of the diet and that no diet can simultaneously optimize all components of the immune system. To date the emphasis has been on the effects of micronutrients in improving immunity, our findings indicate that this must be widened to include the neglected impact of macronutrients on defence against disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Porcine circovirus type 2 (PCV2) is essential but not sufficient for postweaning multi-systemic wasting syndrome (PMWS) occurrence in pigs. The outcome of PCV2 infection depends on the specific immune responses that are developing during the infection. Diseased pigs are immunosupressed and unable to mount effective immune responses to clear the virus from circulation. In the final stage, PMWS-affected pigs suffer from extensive lymphoid lesions and altered cytokine expression patterns in peripheral blood mononuclear cells (PBMCs) and lymphoid organs. PCV2 infection can also be asymptomatic, demonstrating that not every infection will guarantee the occurrence of severe immunopathological disturbances. Asymptomatic animals have higher virus specific and neutralising antibody titres than PMWS-affected animals. Recent results have pointed out that the mechanisms by which PCV2 can affect the immune responses involve the induction of IL-10, virus accumulation into and modulation of plasmacytoid dendritic cells and the role of viral DNA in regulation of immune cell functions. Fourteen years after the first description of PMWS in Canada, efficient commercial vaccines against PCV2 are available. The vaccine success is based on activated humoral and cellular immune responses against PCV2. This review focuses on the recent research on immunological aspects during PCV2 infections and summarizes what is currently known about the vaccine-induced immunity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In mammals, cysteine proteases are essential for the induction and development of both innate and adaptive immune responses. These proteases play a role in antigen-and pathogen-recognition and elimination, signal processing and cell homeostasis. Many pathogens also secrete cysteine proteases that often act on the same target proteins as the mammalian proteases and thereby can modulate host immunity from initial recognition to effector mechanisms. Pathogen-derived proteases range from nonspecific proteases that degrade multiple proteins involved in the immune response to enzymes that are very specific in their mode of action. Here, we overview current knowledge of pathogen-derived cysteine proteases that modulate immune responses by altering the normal function of key receptors or pathways in the mammalian immune system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The innate immune response to bacterial infection is mediated through Toll-like receptors (TLRs), which trigger tightly regulated signaling cascades through transcription factors including NF-?B. LPS activation of TLR4 triggers internalization of the receptor-ligand complex which is directed toward lysosomal degradation or endocytic recycling. Cystic fibrosis (CF) patients display a robust and uncontrolled inflammatory response to bacterial infection, suggesting a defect in regulation. This study examined the intracellular trafficking of TLR4 in CF and non-CF airway epithelial cells following stimulation with LPS. We employed cells lines [16hBE14o-, CFBE41o- (CF), and CFTR-complemented CFBE41o-] and confirmed selected experiments in primary nasal epithelial cells from non-CF controls and CF patients (F508del homozygous). In control cells, TLR4 expression (surface and cytoplasmic) was reduced after LPS stimulation but remained unchanged in CF cells and was accompanied by a heightened inflammatory response 24 h after stimulation. All cells expressed markers of the early (EEA1) and late (Rab7b) endosomes at basal levels. However, only CF cells displayed persistent expression of Rab7b following LPS stimulation. Rab7 variants may directly internalize bacteria to the Golgi for recycling or to the lysosome for degradation. TLR4 colocalized with the lysosomal marker LAMP1 in 16 hBE14o- cells, suggesting that TLR4 is targeted for lysosomal degradation in these cells. However, this colocalization was not observed in CFBE41o- cells, where persistent expression of Rab7 and release of proinflammatory cytokines was detected. Consistent with the apparent inability of CF cells to target TLR4 toward the lysosome for degradation, we observed persistent surface and cytoplasmic expression of this pathogen recognition receptor. This defect may account for the prolonged cycle of chronic inflammation associated with CF.