822 resultados para Business impact analysis
Resumo:
To compare the rejection rates of non-small cell lung cancer (NSCLC) samples obtained by differing sampling methods for testing by Sanger sequencing for epidermal growth factor receptor (EGFR) mutations. To assess the association between unsatisfactory outcomes and the quantity of DNA extracted from cytological versus histological samples.
Resumo:
While load flow conditions vary with different loads, the small-signal stability of the entire system is closely related with to the locations, capacities and models of loads. In this paper, load impacts with different capacities and models on the small-signal stability are analysed. In the real large-scale power system case, the load sensitivity which denotes the sensitivity of the eigenvalue with respect to the load active power is introduced and applied to rank the loads. The loads with high sensitivity are also considered.
Resumo:
Objective: To determine the pooled effect of exposure to one of 11 specialist palliative care teams providing services in patients’ homes.Design: Pooled analysis of a retrospective cohort study.Setting: Ontario, Canada.Participants: 3109 patients who received care from specialist palliative care teams in 2009-11 (exposed) matched by propensity score to 3109 patients who received usual care (unexposed).Intervention: The palliative care teams studied served different geographies and varied in team composition and size but had the same core team members and role: a core group of palliative care physicians, nurses, and family physicians who provide integrated palliative care to patients in their homes. The teams’ role was to manage symptoms, provide education and care, coordinate services, and be available without interruption regardless of time or day.Main outcome measures: Patients (a) being in hospital in the last two weeks of life; (b) having an emergency department visit in the last two weeks of life; or (c) dying in hospital.Results: In both exposed and unexposed groups, about 80% had cancer and 78% received end of life homecare services for the same average duration. Across all palliative care teams, 970 (31.2%) of the exposed group were in hospital and 896 (28.9%) had an emergency department visit in the last two weeks of life respectively, compared with 1219 (39.3%) and 1070 (34.5%) of the unexposed group (P<0.001). The pooled relative risks of being in hospital and having an emergency department visit in late life comparing exposed versus unexposed were 0.68 (95% confidence interval 0.61 to 0.76) and 0.77 (0.69 to 0.86) respectively. Fewer exposed than unexposed patients died in hospital (503 (16.2%) v 887 (28.6%), P<0.001), and the pooled relative risk of dying in hospital was 0.46 (0.40 to 0.52).Conclusions: Community based specialist palliative care teams, despite variation in team composition and geographies, were effective at reducing acute care use and hospital deaths at the end of life.
Resumo:
Fault and fracture systems are the most important store and pathway for groundwater in Ireland’s bedrock aquifers, either directly as conductive flow structures, or indirectly as the locus for the development of dolomitised limestone and karst. This article presents the preliminary results of a study involving the quantitative analysis of fault and fracture systems in the broad range of Irish bedrock types and a consideration of their impact on groundwater flow. The principal aims of the project are to develop generic conceptual models for different fault/fracture systems in different lithologies and at different depths, and to link them to observed groundwater behaviour. Here we briefly describe the geometrical characteristics of the main post-Devonian fault/fracture systems controlling groundwater flow from field observations at outcrops, quarries and mines. The structures range from Lower Carboniferous normal faults through to Variscan-related faults and veins, with the most recent structures including Tertiary strike-slip faults and ubiquitous uplift-related joint systems. The geometrical characteristics of different fault/fracture systems combined with observations of groundwater behaviour in both quarry and mine localities, can be linked to general flow and transport conceptualisations of Irish fractured bedrock. Most importantly they also provide a basis for relating groundwater flow to particular fault/fracture systems and their expression with depth and within different lithological sequences, as well as their regional variability.
Resumo:
Permeable reactive barriers (PRBs) of zero-valent iron (Fe0) are increasingly being used to remediate contaminated ground water. Corrosion of Fe0 filings and tbe formation of precipitates can occur when the PRB material comes in contact with ground water and may reduce the lifespan and effectiveness of the barrier. At present, there are no routine procedures for preparing and analyzing the mineral precipitates from Fe0 PRB material. These procedures are needed because mineralogical composition of corrosion products used to interpret the barrier processes can change with iron oxidation and sample preparation. The objectives of this study were (i) to investigate a method of preparing Fe0 reactive barrier material for mineralogical analysis by X-ray diffraction (XRD), and (ii) to identify Fe mineral phases and rates of transformations induced by different mineralogical preparation techniques. Materials from an in situ Fe0 PRB were collected by undisturbed coring and processed for XRD analysis after different times since sampling for three size fractions and by various drying treatments. We found that whole-sample preparation for analysis was necessary because mineral precipitates occurred within the PRB material in different size fractions of the samples. Green rusts quickly disappeared from acetone-dried samples and were not present in air-dried and oven-dried samples Maghemite/magnetite content increased over time and in oven-dried samples, especially after heating to 105°C. We conclude that care must be taken during sample preparation of Fe0 PRB material, especially for detection of green rusts, to ensure accurate identification of minerals present within the barrier system.
Resumo:
OBJECTIVE: To investigate the impact of smoking and smoking cessation on cardiovascular mortality, acute coronary events, and stroke events in people aged 60 and older, and to calculate and report risk advancement periods for cardiovascular mortality in addition to traditional epidemiological relative risk measures.
DESIGN: Individual participant meta-analysis using data from 25 cohorts participating in the CHANCES consortium. Data were harmonised, analysed separately employing Cox proportional hazard regression models, and combined by meta-analysis.
RESULTS: Overall, 503,905 participants aged 60 and older were included in this study, of whom 37,952 died from cardiovascular disease. Random effects meta-analysis of the association of smoking status with cardiovascular mortality yielded a summary hazard ratio of 2.07 (95% CI 1.82 to 2.36) for current smokers and 1.37 (1.25 to 1.49) for former smokers compared with never smokers. Corresponding summary estimates for risk advancement periods were 5.50 years (4.25 to 6.75) for current smokers and 2.16 years (1.38 to 2.39) for former smokers. The excess risk in smokers increased with cigarette consumption in a dose-response manner, and decreased continuously with time since smoking cessation in former smokers. Relative risk estimates for acute coronary events and for stroke events were somewhat lower than for cardiovascular mortality, but patterns were similar.
CONCLUSIONS: Our study corroborates and expands evidence from previous studies in showing that smoking is a strong independent risk factor of cardiovascular events and mortality even at older age, advancing cardiovascular mortality by more than five years, and demonstrating that smoking cessation in these age groups is still beneficial in reducing the excess risk.
Resumo:
Milling is an important operation in many industries, such as mining and pharmaceutical. Although the comminution process during milling has been extensively studied, the material fragmentation mechanisms in a mill are still not well understood partly because of the lack of an understanding on the local stressing and dynamic information under operational conditions in mills. This paper presents a DEM simulation of particle dynamics and impact events in a centrifugal impact pin mill. The main focus is the statistical characteristics of the dominant stressing modes during the milling process. The frequency, velocity and force of the different impact events between particles and mill components, or between particles, are analysed. © 2013 AIP Publishing LLC.
Resumo:
Recent analyses of sediment samples from "black mat" sites in South America and Europe support previous interpretations of an ET impact event that reversed the Late Glacial demise of LGM ice during the Bølling Allerød warming, resulting in a resurgence of ice termed the Younger Dryas (YD) cooling episode. The breakup or impact of a cosmic vehicle at the YD boundary coincides with the onset of a 1-kyr long interval of glacial resurgence, one of the most studied events of the Late Pleistocene. New analytical databases reveal a corpus of data indicating that the cosmic impact was a real event, most possibly a cosmic airburst from Earth's encounter with the Taurid Complex comet or unknown asteroid, an event that led to cosmic fragments exploding interhemispherically over widely dispersed areas, including the northern Andes of Venezuela and the Alps on the Italian/French frontier. While the databases in the two areas differ somewhat, the overall interpretation is that microtextural evidence in weathering rinds and in sands of associated paleosols and glaciofluvial deposits carry undeniable attributes of melted glassy carbon and Fe spherules, planar deformation features, shock-melted and contorted quartz, occasional transition and platinum metals, and brecciated and impacted minerals of diverse lithologies. In concert with other black mat localities in the Western USA, the Netherlands, coastal France, Syria, Central Asia, Peru, Argentina and Mexico, it appears that a widespread cosmic impact by an asteroid or comet is responsible for deposition of the black mat at the onset of the YD glacial event. Whether or not the impact caused a 1-kyr interval of glacial climate depends upon whether or not the Earth had multiple centuries-long episodic encounters with the Taurid Complex or asteroid remnants; impact-related changes in microclimates sustained climatic forcing sufficient to maintain positive mass balances in the reformed ice; and/or inertia in the Atlantic thermohaline circulation system persisted for 1kyr.
Resumo:
In this study we calculate the electron-impact uncertainties in atomic data for direct ionization and recombination and investigate the role of these uncertainties on spectral diagnostics. We outline a systematic approach to assigning meaningful uncertainties that vary with electron temperature. Once these uncertainty parameters have been evaluated, we can then calculate the uncertainties on key diagnostics through a Monte Carlo routine, using the Astrophysical Emission Code (APEC) [Smith et al. 2001]. We incorporate these uncertainties into well known temperature diagnostics, such as the Lyman alpha versus resonance line ratio and the G ratio. We compare these calculations to a study performed by [Testa et al. 2004], where significant discrepancies in the two diagnostic ratios were observed. We conclude that while the atomic physics uncertainties play a noticeable role in the discrepancies observed by Testa, they do not explain all of them. This indicates that there is another physical process occurring in the system that is not being taken into account. This work is supported in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.
Resumo:
This study considers the potential for influencing business students to become ethical managers by directing their undergraduate learning environment. In particular, the relationship between business students’ academic cheating, as a predictor of workplace ethical behavior, and their approaches to learning is explored. The three approaches to learning identified from the students’ approaches to learning literature are deep approach, represented by an intrinsic interest in and a desire to understand the subject, surface approach, characterized by rote learning and memorization without understanding, and strategic approach, associated with competitive students whose motivation is the achievement of good grades by adopting either a surface or deep approach. Consistent with the hypothesized theoretical model, structural equation modeling revealed that the surface approach is associated with higher levels of cheating, while the deep approach is related to lower levels. The strategic approach was also associated with less cheating and had a statistically stronger influence than the deep approach. Further, a significantly positive relationship reported between deep and strategic approaches suggests that cheating is reduced when deep and strategic approaches are paired. These findings suggest that future managers and business executives can be influenced to behave more ethically in the workplace by directing their learning approaches. It is hoped that the evidence presented may encourage those involved in the design of business programs to implement educational strategies which optimize students’ approaches to learning towards deep and strategic characteristics, thereby equipping tomorrow’s managers and business executives with skills to recognize and respond appropriately to workplace ethical dilemmas.
Resumo:
The impact of climate change on fungal growth and spore production is less well documented than for allergenic pollen grains, although similar implications for respiratory tract diseases in humans occur. Fungal spores are commonly described as either “dry” or “wet” according to the type of weather associated with their occurrence in the air. This study examined the distribution of selected fungal spores (Alternaria spp., Cladosporium spp., Didymella spp., Epicoccum spp., Leptosphaeria spp. and rusts) occurring in the West Midlands of UK during 2 years of contrasting weather. Spore specimens were collected using a 7-day volumetric air sampler and then analysed with the aid of light microscopy. Distributions of spores were then studied using normality tests and Mann–Whitney U test, while relationships with meteorological parameters were investigated using Spearman’s rank test and angular-linear correlation for wind direction analysis. Our results showed that so-called wet spores were more sensitive to the weather changes showing statistically significant differences between the 2 years of study, in contrast to “dry” spores. We predict that in following years we will observe accelerated levels in allergenic fungal spore production as well as changes in species diversity. This study could be a starting point to revise the grouping system of fungal spores as either “dry” or “wet” types and their response to climate change