965 resultados para Bridges Design and construction Safety measures
Resumo:
Mathematical models and statistical analysis are key instruments in soil science scientific research as they can describe and/or predict the current state of a soil system. These tools allow us to explore the behavior of soil related processes and properties as well as to generate new hypotheses for future experimentation. A good model and analysis of soil properties variations, that permit us to extract suitable conclusions and estimating spatially correlated variables at unsampled locations, is clearly dependent on the amount and quality of data and of the robustness techniques and estimators. On the other hand, the quality of data is obviously dependent from a competent data collection procedure and from a capable laboratory analytical work. Following the standard soil sampling protocols available, soil samples should be collected according to key points such as a convenient spatial scale, landscape homogeneity (or non-homogeneity), land color, soil texture, land slope, land solar exposition. Obtaining good quality data from forest soils is predictably expensive as it is labor intensive and demands many manpower and equipment both in field work and in laboratory analysis. Also, the sampling collection scheme that should be used on a data collection procedure in forest field is not simple to design as the sampling strategies chosen are strongly dependent on soil taxonomy. In fact, a sampling grid will not be able to be followed if rocks at the predicted collecting depth are found, or no soil at all is found, or large trees bar the soil collection. Considering this, a proficient design of a soil data sampling campaign in forest field is not always a simple process and sometimes represents a truly huge challenge. In this work, we present some difficulties that have occurred during two experiments on forest soil that were conducted in order to study the spatial variation of some soil physical-chemical properties. Two different sampling protocols were considered for monitoring two types of forest soils located in NW Portugal: umbric regosol and lithosol. Two different equipments for sampling collection were also used: a manual auger and a shovel. Both scenarios were analyzed and the results achieved have allowed us to consider that monitoring forest soil in order to do some mathematical and statistical investigations needs a sampling procedure to data collection compatible to established protocols but a pre-defined grid assumption often fail when the variability of the soil property is not uniform in space. In this case, sampling grid should be conveniently adapted from one part of the landscape to another and this fact should be taken into consideration of a mathematical procedure.
Resumo:
Impact Assessment and Project Appraisal, vol. 22, n.1, March 2004, p. 47–62
Resumo:
This paper is about a design of an urban area Darrieus VAWT, having self-start ability due to an innovative profile design named EN0005, avoiding the need of extra components or external electricity feed-in. An approach is presented to study the ability of a blade profile to offer self-start ability. Methodologies applied for the blade body and for profile development are reported. Field tests and main conclusions are presented to persuade for the arrangement of this design. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Demand response can play a very relevant role in the context of power systems with an intensive use of distributed energy resources, from which renewable intermittent sources are a significant part. More active consumers participation can help improving the system reliability and decrease or defer the required investments. Demand response adequate use and management is even more important in competitive electricity markets. However, experience shows difficulties to make demand response be adequately used in this context, showing the need of research work in this area. The most important difficulties seem to be caused by inadequate business models and by inadequate demand response programs management. This paper contributes to developing methodologies and a computational infrastructure able to provide the involved players with adequate decision support on demand response programs and contracts design and use. The presented work uses DemSi, a demand response simulator that has been developed by the authors to simulate demand response actions and programs, which includes realistic power system simulation. It includes an optimization module for the application of demand response programs and contracts using deterministic and metaheuristic approaches. The proposed methodology is an important improvement in the simulator while providing adequate tools for demand response programs adoption by the involved players. A machine learning method based on clustering and classification techniques, resulting in a rule base concerning DR programs and contracts use, is also used. A case study concerning the use of demand response in an incident situation is presented.
Resumo:
This paper presents the design and implementation of direct power controllers for three-phase matrix converters (MC) operating as Unified Power Flow Controllers (UPFC). Theoretical principles of the decoupled linear power controllers of the MC-UPFC to minimize the cross-coupling between active and reactive power control are established. From the matrix converter based UPFC model with a modified Venturini high frequency PWM modulator, decoupled controllers for the transmission line active (P) and reactive (Q) power direct control are synthesized. Simulation results, obtained from Matlab/Simulink, are presented in order to confirm the proposed approach. Results obtained show decoupled power control, zero error tracking, and fast responses with no overshoot and no steady-state error.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Sistemas Gráficos e Multimédia
Resumo:
Power systems have been experiencing huge changes mainly due to the substantial increase of distributed generation (DG) and the operation in competitive environments. Virtual Power Players (VPP) can aggregate several players, namely a diversity of energy resources, including distributed generation (DG) based on several technologies, electric storage systems (ESS) and demand response (DR). Energy resources management gains an increasing relevance in this competitive context. This makes the DR use more interesting and flexible, giving place to a wide range of new opportunities. This paper proposes a methodology to support VPPs in the DR programs’ management, considering all the existing energy resources (generation and storage units) and the distribution network. The proposed method is based on locational marginal prices (LMP) values. The evaluation of the impact of using DR specific programs in the LMP values supports the manager decision concerning the DR use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 33-bus network with intensive use of DG.
Resumo:
Currently excessive fossil fuel consumption has become a serious problem. People are searching for new solutions of energy production and there are several options to obtain alternative sources of energy without further devastating the already destroyed environment. One of these solutions is growing microalgae, from which biodiesel can be obtained. The microalgae production is a growing business because of its many useful compounds. In order to collect these compounds microalgae must first be harvested and then dried. Nowadays the solutions used for drying use too much energy and therefore are too expensive and not sustainable. The goal of this project, one of the possible choices during the EPS@ISEP 2013 Spring, was to develop a solar microalgae dryer. The multinational team involved in its development was composed of five students, from distinct countries and fields of study, and was the responsible for designing a solar microalgae dryer prototype for the microalgae laboratory of the chemical engineering department at ISEP, suitable for future tests and incorporating control process (in order not to destroy the microalgae during the drying process). The solar microalgae dryer was built to work as a distiller that gets rid of the excess water from the microalgae suspension. This paper presents a possible solution for this problem, the steps to create the device to harvest the microalgae by drying them with the use of solar energy (also used as an energy source for the solar dryer control system), the technologies used to build the solar microalgae dryer, and the benefits it presents compared to current solutions. It also presents the device from the ethical and sustainable viewpoint. Such alternative to already existing methods is competitive as far as energy usage is concerned.
Resumo:
The goal of this EPS@ISEP project proposed in the Spring of 2014 was to develop a flapping wing flying robot. The project was embraced by a multinational team composed of four students from different countries and fields of study. The team designed and implemented a robot inspired by a biplane design, constructed from lightweight materials and battery powered. The prototype, called MyBird, was built with a 250 € budget, reuse existing materials as well as low cost solutions. Although the team's initial idea was to build a light radio controlled robot, time limitations along with setbacks involving the required electrical components led to a light but not radio controlled prototype. The team, from the experience gathered, made a number of future improvement suggestions, namely, the addition of radio control and a camera and the adoption of articulated monoplane design instead of the current biplane design for the wings.
Resumo:
This paper presents the development of a fish-like robot called Bro-Fish. Bro-Fish aims to be an educational toy dedicated to teaching mechanics, programming and the physics of floating objects to youngsters. The underlying intention is to awaken the interest of children for technology, especially biomimetic (biologically inspired) approaches, in order to promote sustainability and raise the level of ecological awareness. The main focus of this project was to create a robot with carangiform locomotion and controllable swimming, providing the opportunity to customize parts and experiment with the physics of floating objects. Therefore, the locomotion principles of fishes and mechanisms developed in related projects were analysed. Inspired by this background knowledge, a prototype was designed and implemented. The main achievement is the new tail mechanism that propels the robot. The tail resembles the undulation motion of fish bodies and is actuated in an innovative way, triggered by an elegant movement of a rotating helicoidal. First experimental tests revealed the potential of the proposed methodology to effectively generate forward propulsion.
Resumo:
International Lifesaving Congress 2007, La Coruna, Spain, December, 2007
Resumo:
The design of an Autonomous Surface Vehicle for operation in river and estuarine scenarios is presented. Multiple operations with autonomous underwater vehicles and support to AUV missions are one of the main design goals in the ROAZ system. The mechanical design issues are discussed. Hardware, software and implementation status are described along with the control and navigation system architecture. Some preliminary test results concerning a custom developed thruster are presented along with hydrodynamic drag calculations by the use of computer fluid dynamic methods.
Resumo:
O presente trabalho pretende mostrar que a aplicação de medidas de conservação de energia (MCE) pode representar uma redução da intensidade de utilização de matérias-primas na construção de um edifício. Mais concretamente, pode representar uma redução da utilização de materiais e equipamentos, e como consequência, uma redução no esforço económico ao primeiro investimento. Podendo posteriormente representar uma redução na utilização de energia durante o período de funcionamento do edifício. A aplicação de MCE no sector da construção tem vindo a ser uma prática corrente nos novos edifícios e edifícios sujeitos a grandes intervenções de reabilitação. Esta prática deve-se à obrigatoriedade de cumprimento de requisitos regulamentares aplicados à otimização do desempenho energético dos edifícios e dos seus sistemas técnicos, nomeadamente, o RCCTE e o RSECE, entretanto revogados pelo REH e pelo RECS, respetivamente. A implementação de MCE apresenta, na maioria dos casos, benefícios económicos para o promotor do edifício, uma vez que se traduz muitas vezes, na otimização do dimensionamento dos sistemas de Aquecimento, Ventilação e Ar Condicionado (AVAC). Esta otimização permite reduzir os custos associados ao primeiro investimento, bem como na utilização de energia por parte do utilizador, logo na redução dos custos de exploração. No entanto, a falta de quantificação dos impactos do dimensionamento dos sistemas AVAC, da redução de utilização de energia e da análise do custo-benefício da sua aplicação pode condicionar o interesse na sua implementação. Neste contexto, surge a presente dissertação, por iniciativa do Instituto Soldadura e Qualidade (ISQ), aplicado a um caso prático de um edifício já construído e propriedade daquela empresa. Com este trabalho pretende-se avaliar o contributo efetivo das MCE implementadas na fase de projeto e na fase de construção, quer na otimização da dimensão de sistemas e equipamentos AVAC, por via da redução das necessidades energéticas, quer na redução de utilização de energia, permitindo, de seguida, uma avaliação custo-benefício.Na base do caso de estudo está o ECOTERMOLAB, o edifício acima referido, adquirido pelo ISQ para instalação de um laboratório de formação, investigação e desenvolvimento na área da energia. Após aquisição pelo ISQ, o edifício sofreu várias alterações/beneficiações, entre as quais a implementação de MCE, tais como, a aplicação de isolamento térmico na envolvente opaca (paredes, pavimentos e coberturas), duplicação dos vãos envidraçados simples, conferindo-lhes melhores caraterísticas térmicas, e pela aplicação de proteções solar. Foram ainda adotadas MCE aos sistemas AVAC, designadamente, pela adoção de recuperadores de calor nas Unidades de Tratamento de Ar Novo (UTAN’s) e de variadores de velocidade nas bombas de circulação de água e nos ventiladores de ar das UTAN’s. Pretendia o ISQ concluir se a aplicação de todas as MCE contribuiu de forma efetiva para o dimensionamento de sistemas e equipamentos AVAC de menor capacidade e, consequentemente, numa redução de utilização de energia. Em sequência, pretendia avaliar a viabilidade económica da aplicação de todas as MCE, estimando o sobrecusto inicial e o tempo necessário para o retorno financeiro daquele investimento. Para alcançar os objetivos propostos, procedeu-se à simulação energética dinâmica do ECOTERMOLAB, utilizando o programa EnergyPlus. Primeiro foi simulada uma situação base do edifício, sem quaisquer MCE. Posteriormente foi caraterizada cada uma das situações de aplicação das MCE, com o objetivo de avaliar o respetivo impacto individual na utilização de energia pelos sistemas AVAC. Por último foram assumidas todas as soluções em conjunto para avaliar o impacto final de todas as MCE na utilização de energia dos sistemas AVAC, bem como no seu dimensionamento. Das simulações dinâmicas foram obtidos os valores das necessidades de aquecimento e arrefecimento, de energia utilizada pelos sistemas AVAC e de caudais de água aquecida e arrefecida circulada. Com estes valores foi feita uma estimativa de dimensionamento dos equipamentos e componentes AVAC para as situações da aplicação de todas as MCE no ECOTERMOLAB e a sua ausência. A partir da diferença dos custos de aquisição dos respetivos equipamentos e dos valores de poupança em energia foi realizado o estudo da viabilidade económica da implementação das MCE neste edifício. Este estudo permitiu concluir que a aplicação das MCE no ECOTERMOLAB levou à redução da dimensão na generalidade dos equipamentos e componentes AVAC. Permitiu, ainda, concluir que houve uma diminuição de utilização de energia por parte destes sistemas e equipamentos para o aquecimento e arrefecimento. Conclui-se ainda que o período de retorno (Payback) do sobrecusto inicial, estimado em 37.822€ é de, aproximadamente, onze anos e meio, para um valor atual líquido (VAL) de 8.061€ e à taxa interna de rentabilidade (TIR) de 7,03%.
Resumo:
Further improvements in demand response programs implementation are needed in order to take full advantage of this resource, namely for the participation in energy and reserve market products, requiring adequate aggregation and remuneration of small size resources. The present paper focuses on SPIDER, a demand response simulation that has been improved in order to simulate demand response, including realistic power system simulation. For illustration of the simulator’s capabilities, the present paper is proposes a methodology focusing on the aggregation of consumers and generators, providing adequate tolls for the demand response program’s adoption by evolved players. The methodology proposed in the present paper focuses on a Virtual Power Player that manages and aggregates the available demand response and distributed generation resources in order to satisfy the required electrical energy demand and reserve. The aggregation of resources is addressed by the use of clustering algorithms, and operation costs for the VPP are minimized. The presented case study is based on a set of 32 consumers and 66 distributed generation units, running on 180 distinct operation scenarios.