976 resultados para Brain imaging
Resumo:
Contexte: Plusieurs études ont démontré que les indices environnementaux associés à la cigarette peuvent provoquer des envies de consommer (« cravings ») chez les fumeurs, ce qui nuit aux efforts d’abandon de la substance et favorise le maintien du tabagisme. Un bon nombre d’études en imagerie cérébrale ont examiné les bases neurophysiologiques de cette caractéristique clinique. Le tabagisme se caractérise aussi par l’incapacité des représentations négatives de la consommation (méfaits médicaux et sociaux) d’influencer la consommation des fumeurs. Étonnamment toutefois, très peu de travaux de recherche se sont intéressés à examiner les bases neurophysiologiques de cette insouciance envers les méfaits de la cigarette chez les fumeurs. En utilisant l'imagerie cérébrale fonctionnelle, l'objectif de cette étude était: d’examiner la réponse neurophysiologique des fumeurs chroniques à des images qui illustrent les effets négatifs de la cigarette (campagne anti-tabac); d’examiner le caractère affectif de cette réactivité utilisant des conditions contrôles (c.-à-d., images aversives non-liées au tabac et appétitives liées au tabac); d'examiner la connectivité fonctionnelle durant cette tâche entre les systèmes affectifs et exécutifs (une interaction qui peut favoriser ou entraver l'impact des évènements aversifs). Méthodes: 30 fumeurs chroniques ont passé une session de neuroimagerie durant laquelle ils devaient regarder des images appétitives et aversives de cigarettes, des images aversives non-reliées au tabac et des images neutres. Résultats: Les images aversives liés au tabagisme suscitent une plus grande activation dans le cortex médial préfrontal, l'amygdale, le gyrus frontal inférieur et le cortex orbitofrontal latéral en comparaison avec les images neutres, mais une moins grande activation dans des structures médiaux / sous-corticales comparé aux images aversives non-reliés et images appétitives reliées aux tabac. L’activité du système exécutif présente une connectivité fonctionnelle négative avec le système affectif lorsque les images aversives sont liées au tabac, mais pas quand elles ne le sont pas. Conclusions: Le modèle d'activation du cerveau observé suggère qu’il y a un biais dans la réactivité des fumeurs chroniques lorsqu’ils observent des représentations négatives de la consommation du tabac. L’activité du système exécutif cérébral semble promouvoir chez les fumeurs une baisse d’activité dans des régions impliquées dans la genèse d’une réponse physiologique affective; il s’agit d’un mécanisme qui permettrait de réduire l’impact persuasif de ces représentations des méfaits de la cigarette sur la consommation des fumeurs.
Resumo:
Department of Biotechnology, Cochin University of Science and Technology
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
A spectral angle based feature extraction method, Spectral Clustering Independent Component Analysis (SC-ICA), is proposed in this work to improve the brain tissue classification from Magnetic Resonance Images (MRI). SC-ICA provides equal priority to global and local features; thereby it tries to resolve the inefficiency of conventional approaches in abnormal tissue extraction. First, input multispectral MRI is divided into different clusters by a spectral distance based clustering. Then, Independent Component Analysis (ICA) is applied on the clustered data, in conjunction with Support Vector Machines (SVM) for brain tissue analysis. Normal and abnormal datasets, consisting of real and synthetic T1-weighted, T2-weighted and proton density/fluid-attenuated inversion recovery images, were used to evaluate the performance of the new method. Comparative analysis with ICA based SVM and other conventional classifiers established the stability and efficiency of SC-ICA based classification, especially in reproduction of small abnormalities. Clinical abnormal case analysis demonstrated it through the highest Tanimoto Index/accuracy values, 0.75/98.8%, observed against ICA based SVM results, 0.17/96.1%, for reproduced lesions. Experimental results recommend the proposed method as a promising approach in clinical and pathological studies of brain diseases
Resumo:
In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.
Resumo:
Multispectral analysis is a promising approach in tissue classification and abnormality detection from Magnetic Resonance (MR) images. But instability in accuracy and reproducibility of the classification results from conventional techniques keeps it far from clinical applications. Recent studies proposed Independent Component Analysis (ICA) as an effective method for source signals separation from multispectral MR data. However, it often fails to extract the local features like small abnormalities, especially from dependent real data. A multisignal wavelet analysis prior to ICA is proposed in this work to resolve these issues. Best de-correlated detail coefficients are combined with input images to give better classification results. Performance improvement of the proposed method over conventional ICA is effectively demonstrated by segmentation and classification using k-means clustering. Experimental results from synthetic and real data strongly confirm the positive effect of the new method with an improved Tanimoto index/Sensitivity values, 0.884/93.605, for reproduced small white matter lesions
Resumo:
Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users’ feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved
Resumo:
To various degrees, insects in nature adapt to and live with two fundamental environmental rhythms around them: (1) the daily rhythm of light and dark, and (2) the yearly seasonal rhythm of the changing photoperiod (length of light per day). It is hypothesized that two biological clocks evolved in organisms on earth which allow them to harmonize successfully with the two environmental rhythms: (1) the circadian clock, which orchestrates circadian rhythms in physiology and behavior, and (2) the photoperiodic clock, which allows for physiological adaptations to changes in photoperiod during the course of the year (insect photoperiodism). The circadian rhythm is endogenous and continues in constant conditions, while photoperiodism requires specific light inputs of a minimal duration. Output pathways from both clocks control neurosecretory cells which regulate growth and reproduction. This dissertation focuses on the question whether different photoperiods change the network and physiology of the circadian clock of an originally equatorial cockroach species. It is assumed that photoperiod-dependent plasticity of the cockroach circadian clock allows for adaptations in physiology and behavior without the need for a separate photoperiodic clock circuit. The Madeira cockroach Rhyparobia maderae is a well established circadian clock model system. Lesion and transplantation studies identified the accessory medulla (aMe), a small neuropil with about 250 neurons, as the cockroach circadian pacemaker. Among them, the pigment-dispersing factor immunoreactive (PDF-ir) neurons anterior to the aMe (aPDFMes) play a key role as inputs to and outputs of the circadian clock system. The aim of my doctoral thesis was to examine whether and how different photoperiods modify the circadian clock system. With immunocytochemical studies, three-dimensional (3D) reconstruction, standardization and Ca2+-imaging technique, my studies revealed that raising cockroaches in different photoperiods changed the neuronal network of the circadian clock (Wei and Stengl, 2011). In addition, different photoperiods affected the physiology of single, isolated circadian pacemaker neurons. This thesis provides new evidence for the involvement of the circadian clock in insect photoperiodism. The data suggest that the circadian pacemaker system of the Madeira cockroach has the plasticity and potential to allow for physiological adaptations to different photoperiods. Therefore, it may express also properties of a photoperiodic clock.
Resumo:
Brain Tumor, Mood Disorder and EncephalopathyWe report a case of a patient was 65 years old, who was admitted with neurologic symptoms ill-defined by imaging findings that initial meningioma wing of the sphenoid, tumor resection, is performed. She presented torpid evolution, progressive neurological deterioration, until her death.
Resumo:
BACKGROUND: Resting-state functional magnetic resonance imaging (fMRI) enables investigation of the intrinsic functional organization of the brain. Fractal parameters such as the Hurst exponent, H, describe the complexity of endogenous low-frequency fMRI time series on a continuum from random (H = .5) to ordered (H = 1). Shifts in fractal scaling of physiological time series have been associated with neurological and cardiac conditions. METHODS: Resting-state fMRI time series were recorded in 30 male adults with an autism spectrum condition (ASC) and 33 age- and IQ-matched male volunteers. The Hurst exponent was estimated in the wavelet domain and between-group differences were investigated at global and voxel level and in regions known to be involved in autism. RESULTS: Complex fractal scaling of fMRI time series was found in both groups but globally there was a significant shift to randomness in the ASC (mean H = .758, SD = .045) compared with neurotypical volunteers (mean H = .788, SD = .047). Between-group differences in H, which was always reduced in the ASC group, were seen in most regions previously reported to be involved in autism, including cortical midline structures, medial temporal structures, lateral temporal and parietal structures, insula, amygdala, basal ganglia, thalamus, and inferior frontal gyrus. Severity of autistic symptoms was negatively correlated with H in retrosplenial and right anterior insular cortex. CONCLUSIONS: Autism is associated with a small but significant shift to randomness of endogenous brain oscillations. Complexity measures may provide physiological indicators for autism as they have done for other medical conditions.
Resumo:
Prosody is an important feature of language, comprising intonation, loudness, and tempo. Emotional prosodic processing forms an integral part of our social interactions. The main aim of this study was to use bold contrast fMRI to clarify the normal functional neuroanatomy of emotional prosody, in passive and active contexts. Subjects performed six separate scanning studies, within which two different conditions were contrasted: (1) "pure" emotional prosody versus rest; (2) congruent emotional prosody versus 'neutral' sentences; (3) congruent emotional prosody versus rest; (4) incongruent emotional prosody versus rest; (5) congruent versus incongruent emotional prosody; and (6) an active experiment in which subjects were instructed to either attend to the emotion conveyed by semantic content or that conveyed by tone of voice. Data resulting from these contrasts were analysed using SPM99. Passive listening to emotional prosody consistently activated the lateral temporal lobe (superior and/or middle temporal gyri). This temporal lobe response was relatively right-lateralised with or without semantic information. Both the separate and direct comparisons of congruent and incongruent emotional prosody revealed that subjects used fewer brain regions to process incongruent emotional prosody than congruent. The neural response to attention to semantics, was left lateralised, and recruited an extensive network not activated by attention to emotional prosody. Attention to emotional prosody modulated the response to speech, and induced right-lateralised activity, including the middle temporal gyrus. In confirming the results of lesion and neuropsychological studies, the current study emphasises the importance of the right hemisphere in the processing of emotional prosody, specifically the lateral temporal lobes. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
We frequently encounter conflicting emotion cues. This study examined how the neural response to emotional prosody differed in the presence of congruent and incongruent lexico-semantic cues. Two hypotheses were assessed: (i) decoding emotional prosody with conflicting lexico-semantic cues would activate brain regions associated with cognitive conflict (anterior cingulate and dorsolateral prefrontal cortex) or (ii) the increased attentional load of incongruent cues would modulate the activity of regions that decode emotional prosody (right lateral temporal cortex). While the participants indicated the emotion conveyed by prosody, functional magnetic resonance imaging data were acquired on a 3T scanner using blood oxygenation level-dependent contrast. Using SPM5, the response to congruent cues was contrasted with that to emotional prosody alone, as was the response to incongruent lexico-semantic cues (for the 'cognitive conflict' hypothesis). The right lateral temporal lobe region of interest analyses examined modulation of activity in this brain region between these two contrasts (for the 'prosody cortex' hypothesis). Dorsolateral prefrontal and anterior cingulate cortex activity was not observed, and neither was attentional modulation of activity in right lateral temporal cortex activity. However, decoding emotional prosody with incongruent lexico-semantic cues was strongly associated with left inferior frontal gyrus activity. This specialist form of conflict is therefore not processed by the brain using the same neural resources as non-affective cognitive conflict and neither can it be handled by associated sensory cortex alone. The recruitment of inferior frontal cortex may indicate increased semantic processing demands but other contributory functions of this region should be explored.
Resumo:
Individual differences in cognitive style can be characterized along two dimensions: ‘systemizing’ (S, the drive to analyze or build ‘rule-based’ systems) and ‘empathizing’ (E, the drive to identify another's mental state and respond to this with an appropriate emotion). Discrepancies between these two dimensions in one direction (S > E) or the other (E > S) are associated with sex differences in cognition: on average more males show an S > E cognitive style, while on average more females show an E > S profile. The neurobiological basis of these different profiles remains unknown. Since individuals may be typical or atypical for their sex, it is important to move away from the study of sex differences and towards the study of differences in cognitive style. Using structural magnetic resonance imaging we examined how neuroanatomy varies as a function of the discrepancy between E and S in 88 adult males from the general population. Selecting just males allows us to study discrepant E-S profiles in a pure way, unconfounded by other factors related to sex and gender. An increasing S > E profile was associated with increased gray matter volume in cingulate and dorsal medial prefrontal areas which have been implicated in processes related to cognitive control, monitoring, error detection, and probabilistic inference. An increasing E > S profile was associated with larger hypothalamic and ventral basal ganglia regions which have been implicated in neuroendocrine control, motivation and reward. These results suggest an underlying neuroanatomical basis linked to the discrepancy between these two important dimensions of individual differences in cognitive style.
Resumo:
Using functional magnetic resonance imaging, we found that when bilinguals named pictures or read words aloud, in their native or nonnative language, activation was higher relative to monolinguals in 5 left hemisphere regions: dorsal precentral gyrus, pars triangularis, pars opercularis, superior temporal gyrus, and planum temporale. We further demonstrate that these areas are sensitive to increasing demands on speech production in monolinguals. This suggests that the advantage of being bilingual comes at the expense of increased work in brain areas that support monolingual word processing. By comparing the effect of bilingualism across a range of tasks, we argue that activation is higher in bilinguals compared with monolinguals because word retrieval is more demanding; articulation of each word is less rehearsed; and speech output needs careful monitoring to avoid errors when competition for word selection occurs between, as well as within,language.