695 resultados para Bomi Kang
Resumo:
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
Resumo:
Recently, we demonstrated that circulating levels of vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) are increased in sepsis (Yano, K., P.C. Liaw, J.M. Mullington, S.C. Shih, H. Okada, N. Bodyak, P.M. Kang, L. Toltl, B. Belikoff, J. Buras, et al. 2006. J. Exp. Med. 203:1447-1458). Moreover, enhanced VEGF/Flk-1 signaling was shown to contribute to sepsis morbidity and mortality. We tested the hypothesis that PlGF also contributes to sepsis outcome. In mouse models of endotoxemia and cecal ligation puncture, the genetic absence of PlGF or the systemic administration of neutralizing anti-PlGF antibodies resulted in higher mortality compared with wild-type or immunoglobulin G-injected controls, respectively. The increased mortality associated with genetic deficiency of PlGF was reversed by adenovirus (Ad)-mediated overexpression of PlGF. In the endotoxemia model, PlGF deficiency was associated with elevated circulating levels of VEGF, induction of VEGF expression in the liver, impaired cardiac function, and organ-specific accentuation of barrier dysfunction and inflammation. Mortality of endotoxemic PlGF-deficient mice was increased by Ad-mediated overexpression of VEGF and was blocked by expression of soluble Flt-1. Collectively, these data suggest that up-regulation of PlGF in sepsis is an adaptive host response that exerts its benefit, at least in part, by attenuating VEGF signaling.
Resumo:
In this thesis, we consider Bayesian inference on the detection of variance change-point models with scale mixtures of normal (for short SMN) distributions. This class of distributions is symmetric and thick-tailed and includes as special cases: Gaussian, Student-t, contaminated normal, and slash distributions. The proposed models provide greater flexibility to analyze a lot of practical data, which often show heavy-tail and may not satisfy the normal assumption. As to the Bayesian analysis, we specify some prior distributions for the unknown parameters in the variance change-point models with the SMN distributions. Due to the complexity of the joint posterior distribution, we propose an efficient Gibbs-type with Metropolis- Hastings sampling algorithm for posterior Bayesian inference. Thereafter, following the idea of [1], we consider the problems of the single and multiple change-point detections. The performance of the proposed procedures is illustrated and analyzed by simulation studies. A real application to the closing price data of U.S. stock market has been analyzed for illustrative purposes.
Resumo:
Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.
Expression Analysis of the Theileria parva Subtelomere-Encoded Variable Secreted Protein Gene Family
Resumo:
Background The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs) form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm. Methodology/Principal Findings We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals. Conclusions Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene expression and the potential biological role of these enigmatic proteins.
Resumo:
INTRODUCTION Our objective was to investigate potential associations between maxillary sinus floor extension and inclination of maxillary second premolars and second molars in patients with Class II Division 1 malocclusion whose orthodontic treatment included maxillary first molar extractions. METHODS The records of 37 patients (18 boys, 19 girls; mean age, 13.2 years; SD, 1.62 years) treated between 1998 and 2004 by 1 orthodontist with full Begg appliances were used in this study. Inclusion criteria were white patients with Class II Division 1 malocclusion, sagittal overjet of ≥4 mm, treatment plan including extraction of the maxillary first permanent molars, no missing teeth, and no agenesis. Maxillary posterior tooth inclination and lower maxillary sinus area in relation to the palatal plane were measured on lateral cephalograms at 3 time points: at the start and end of treatment, and on average 2.5 years posttreatment. Data were analyzed for the second premolar and second molar inclinations by using mixed linear models. RESULTS The analysis showed that the second molar inclination angle decreased by 7° after orthodontic treatment, compared with pretreatment values, and by 11.5° at the latest follow-up, compared with pretreatment. There was evidence that maxillary sinus volume was negatively correlated with second molar inclination angle; the greater the volume, the smaller the inclination angle. For premolars, inclination increased by 15.4° after orthodontic treatment compared with pretreatment, and by 8.1° at the latest follow-up compared with baseline. The volume of the maxillary sinus was not associated with premolar inclination. CONCLUSIONS We found evidence of an association between maxillary second molar inclination and surface area of the lower sinus in patients treated with maxillary first molar extractions. Clinicians who undertake such an extraction scheme in Class II patients should be aware of this potential association and consider appropriate biomechanics to control root uprighting.
Resumo:
AIMS:Duchenne muscular dystrophy (DMD) is a muscle disease with serious cardiac complications. Changes in Ca(2+) homeostasis and oxidative stress were recently associated with cardiac deterioration, but the cellular pathophysiological mechanisms remain elusive. We investigated whether the activity of ryanodine receptor (RyR) Ca(2+) release channels is affected, whether changes in function are cause or consequence and which post-translational modifications drive disease progression. METHODS AND RESULTS:Electrophysiological, imaging, and biochemical techniques were used to study RyRs in cardiomyocytes from mdx mice, an animal model of DMD. Young mdx mice show no changes in cardiac performance, but do so after ∼8 months. Nevertheless, myocytes from mdx pups exhibited exaggerated Ca(2+) responses to mechanical stress and 'hypersensitive' excitation-contraction coupling, hallmarks of increased RyR Ca(2+) sensitivity. Both were normalized by antioxidants, inhibitors of NAD(P)H oxidase and CaMKII, but not by NO synthases and PKA antagonists. Sarcoplasmic reticulum Ca(2+) load and leak were unchanged in young mdx mice. However, by the age of 4-5 months and in senescence, leak was increased and load was reduced, indicating disease progression. By this age, all pharmacological interventions listed above normalized Ca(2+) signals and corrected changes in ECC, Ca(2+) load, and leak. CONCLUSION:Our findings suggest that increased RyR Ca(2+) sensitivity precedes and presumably drives the progression of dystrophic cardiomyopathy, with oxidative stress initiating its development. RyR oxidation followed by phosphorylation, first by CaMKII and later by PKA, synergistically contributes to cardiac deterioration.
Resumo:
Pepper (Capsicum annuum) serotonin N-hydroxycinnamoyltransferase (SHT) catalyzes the synthesis of N-hydroxycinnamic acid amides of serotonin, including feruloylserotonin and p-coumaroylserotonin. To elucidate the domain or the key amino acid that determines the amine substrate specificity, we isolated a tyramine N-hydroxycinnamoyltransferase (THT) gene from pepper. Purified recombinant THT protein catalyzed the synthesis of N-hydroxycinnamic acid amides of tyramine, including feruloyltyramine and p-coumaroyltyramine, but did not accept serotonin as a substrate. Both the SHT and THT mRNAs were found to be expressed constitutively in all pepper organs. Pepper SHT and THT, which have primary sequences that are 78% identical, were used as models to investigate the structural determinants responsible for their distinct substrate specificities and other enzymatic properties. A series of chimeric genes was constructed by reciprocal exchange of DNA segments between the SHT and THT cDNAs. Functional characterization of the recombinant chimeric proteins revealed that the amino acid residues 129 to 165 of SHT and the corresponding residues 125 to 160 in THT are critical structural determinants for amine substrate specificity. Several amino acids are strongly implicated in the determination of amine substrate specificity, in which glycine-158 is involved in catalysis and amine substrate binding and tyrosine-149 plays a pivotal role in controlling amine substrate specificity between serotonin and tyramine in SHT. Furthermore, the indisputable role of tyrosine is corroborated by the THT-F145Y mutant that uses serotonin as the acyl acceptor. The results from the chimeras and the kinetic measurements will direct the creation of additional novel N-hydroxycinnamoyltransferases from the various N-hydroxycinnamoyltransferases found in nature.