1000 resultados para Boltzmann factor
Resumo:
BACKGROUND: Vascular-endothelial-growth-factor (VEGF) is a key mediator of angiogenesis. VEGF-targeting therapies have shown significant benefits and been successfully integrated in routine clinical practice for other types of cancer, such as metastatic colorectal cancer. By contrast, individual trial results in metastatic breast cancer (MBC) are highly variable and their value is controversial. OBJECTIVES: To evaluate the benefits (in progression-free survival (PFS) and overall survival (OS)) and harms (toxicity) of VEGF-targeting therapies in patients with hormone-refractory or hormone-receptor negative metastatic breast cancer. SEARCH METHODS: Searches of CENTRAL, MEDLINE, EMBASE, the Cochrane Breast Cancer Group's Specialised Register, registers of ongoing trials and proceedings of conferences were conducted in January and September 2011, starting in 2000. Reference lists were scanned and members of the Cochrane Breast Cancer Group, experts and manufacturers of relevant drug were contacted to obtain further information. No language restrictions were applied. SELECTION CRITERIA: Randomised controlled trials (RCTs) to evaluate treatment benefit and non-randomised studies in the routine oncology practice setting to evaluate treatment harms. DATA COLLECTION AND ANALYSIS: We performed data collection and analysis according to the published protocol. Individual patient data was sought but not provided. Therefore, the meta-analysis had to be based on published data. Summary statistics for the primary endpoint (PFS) were hazard ratios (HRs). MAIN RESULTS: We identified seven RCTs, one register, and five ongoing trials from a total of 347 references. The published trials for VEGF-targeting drugs in MBC were limited to bevacizumab. Four trials, including a total of 2886 patients, were available for the comparison of first-line chemotherapy, with versus without bevacizumab. PFS (HR 0.67; 95% confidence interval (CI) 0.61 to 0.73) and response rate were significantly better for patients treated with bevacizumab, with moderate heterogeneity regarding the magnitude of the effect on PFS. For second-line chemotherapy, a smaller, but still significant benefit in terms of PFS could be demonstrated for patients treated with bevacizumab (HR 0.85; 95% CI 0.73 to 0.98), as well as a benefit in tumour response. However, OS did not differ significantly, neither in first- (HR 0.93; 95% CI 0.84 to 1.04), nor second-line therapy (HR 0.98; 95% CI 0.83 to 1.16). Quality of life (QoL) was evaluated in four trials but results were published for only two of these with no relevant impact. Subgroup analysis stated a significant greater benefit for patients with previous (taxane) chemotherapy and patients with hormone-receptor negative status. Regarding toxicity, data from RCTs and registry data were consistent and in line with the known toxicity profile of bevacizumab. While significantly higher rates of adverse events (AEs) grade III/IV (odds ratio (OR) 1.77; 95% CI 1.44 to 2.18) and serious adverse events (SAEs) (OR 1.41; 95% CI 1.13 to 1.75) were observed in patients treated with bevacizumab, rates of treatment-related deaths were lower in patients treated with bevacizumab (OR 0.60; 95% CI 0.36 to 0.99). AUTHORS' CONCLUSIONS: The overall patient benefit from adding bevacizumab to first- and second-line chemotherapy in metastatic breast cancer can at best be considered as modest. It is dependent on the type of chemotherapy used and limited to a prolongation of PFS and response rates in both first- and second-line therapy, both surrogate parameters. In contrast, bevacizumab has no significant impact on the patient-related secondary outcomes of OS or QoL, which indicate a direct patient benefit. For this reason, the clinical value of bevacizumab for metastatic breast cancer remains controversial.
Resumo:
STUDY OBJECTIVE; To evaluate interactive effects of volemic status and positive end-expiratory pressure (PEEP) on the plasma levels of atrial natriuretic factor (ANF) in assist-controlled mechanical ventilation (MV). DESIGN: Three successive protocols applied in randomized order to each participant. SETTING: Clinical investigation laboratory. PARTICIPANTS: Twenty-one young, healthy adults. INTERVENTIONS: The three protocols were as follows: (1) MV+PEEP, normovolemia; (2) MV+PEEP, hypervolemia; and (3) spontaneous breathing (SB), hypervolemia. In protocols 1 and 2, a preliminary period of SB lasting 2 h was followed by MV alone (0.5 h), MV+20 cm H2O PEEP (1 h), and a recovery period of SB (1.5 h). Hypervolemia was induced by the continuous i.v. infusion of 3 L of 0.9% NaCl in 5 h (protocols 2 and 3). MEASUREMENTS AND RESULTS: Heart rate, BP, and the plasma levels of immunoreactive ANF and catecholamines were measured serially. During hypervolemia, ANF significantly decreased when PEEP was added to MV (protocol 2: from 31.1 +/- 2.7 to 20.7 +/- 1.5 fmol/mL; p < 0.01). This did not occur in normovolemia (protocol 1: from 20.0 +/- to 16.7 +/- 1.2 fmol/mL; p = NS). The different effects of MV+PEEP in normovolemia and hypervolemia were not related to differences in circulating catecholamine levels. CONCLUSIONS: These results demonstrate for the first time (to our knowledge) that volemic status modulates the response of plasma ANF to PEEP in humans. The role of ANF in the water and salt retention induced by MV with PEEP might be limited to hypervolemic conditions.
Resumo:
Maturation of astrocytes, neurons, and oligodendrocytes was studied in serum-free aggregating cell cultures of fetal rat telencephalon by an immunocytochemical approach. Cell type-specific immunofluorescence staining was examined by using antibodies directed against glial fibrillary acidic protein (GFAP) and vimentin, two astroglial markers; neuron-specific enolase (NSE) and neurofilament (NF), two neuronal markers, and galactocerebroside (GC), an oligodendroglial marker. It was found that the cellular maturation in aggregates is characterized by distinct developmental increases in immunoreactivity for GFAP, vimentin, NSE, NF, and GC, and by a subsequent decrease of vimentin-positive structures in more differentiated cultures. These findings are in agreement with observations in vivo, and they corroborate previous biochemical studies of this histotypic culture system. Treatment of very immature cultures with a low dose of epidermal growth factor (EGF, 5 ng/ml) enhanced the developmental increase in GFAP, NSE, NF and GC immunoreactivity, suggesting an acceleration of neuronal and glial maturation. In addition, EGF was found to alter the cellular organization within the aggregates, presumably by influencing cell migration.
Resumo:
In Pseudomonas fluorescens CHA0, mutation of the GacA-controlled aprA gene (encoding the major extracellular protease) or the gacA regulatory gene resulted in reduced biocontrol activity against the root-knot nematode Meloidogyne incognita during tomato and soybean infection. Culture supernatants of strain CHA0 inhibited egg hatching and induced mortality of M. incognita juveniles more strongly than did supernatants of aprA and gacA mutants, suggesting that AprA protease contributes to biocontrol.
Resumo:
ABSTRACT: BACKGROUND: Upregulation of nuclear factor kappa B (NFκB) activity and neuroendocrine differentiation are two mechanisms known to be involved in prostate cancer (PC) progression to castration resistance. We have observed that major components of these pathways, including NFκB, proteasome, neutral endopeptidase (NEP) and endothelin 1 (ET-1), exhibit an inverse and mirror image pattern in androgen-dependent (AD) and -independent (AI) states in vitro. METHODS: We have now investigated for evidence of a direct mechanistic connection between these pathways with the use of immunocytochemistry (ICC), western blot analysis, electrophoretic mobility shift assay (EMSA) and proteasome activity assessment. RESULTS: Neuropeptide (NP) stimulation induced nuclear translocation of NFκB in a dose-dependent manner in AI cells, also evident as reduced total inhibitor κB (IκB) levels and increased DNA binding in EMSA. These effects were preceded by increased 20 S proteasome activity at lower doses and at earlier times and were at least partially reversed under conditions of NP deprivation induced by specific NP receptor inhibitors, as well as NFκB, IκB kinase (IKK) and proteasome inhibitors. AD cells showed no appreciable nuclear translocation upon NP stimulation, with less intense DNA binding signal on EMSA. CONCLUSIONS: Our results support evidence for a direct mechanistic connection between the NPs and NFκB/proteasome signaling pathways, with a distinct NP-induced profile in the more aggressive AI cancer state.
Resumo:
OBJECTIVE: Body weight development is closely regulated by central nervous mechanisms. As has been demonstrated recently, the capability of the brain to actively demand energy from the body (brain-pull) is indispensable for the maintenance of systemic homeostasis. A deficit in this brain-pull may result in compensatory ingestive behavior followed by weight gain in the medium or long term. The aim of this study was to establish a biomarker of such an incompetent brain-pull. Since lactate is an alternative cerebral energy substrate to glucose, we investigated whether low fasting plasma lactate concentrations are associated with weight gain and increased feelings of hunger in patients with type 2 diabetes over a 3-year period. METHODS: In a population based cohort study 134 type 2 diabetes patients were examined at baseline and 3-year follow-up. Plasma lactate concentrations and additional hormones associated with food intake such as e.g. insulin, or leptin, as well as psychological variables like hunger feelings before and after a standardized breakfast were measured. The relation between fasting plasma lactate concentrations and postprandial hunger as well as follow-up weight was analyzed. RESULTS: Low fasting plasma lactate concentrations predicted a higher 3-year follow-up weight (B=-1.268, SE=0.625, p=0.04). Moreover, low fasting plasma lactate concentrations were associated with more pronounced feelings of postprandial hunger (B=-0.406, SE=0.137, p<0.01). CONCLUSIONS: We conclude that low plasma lactate concentrations may represent a biomarker of an incompetent brain-pull, which is associated with weight gain and increased postprandial hunger in patients with type 2 diabetes mellitus. These results are in line with the view that plasma lactate can be used by the brain as an alternative energy substrate and thereby to some extent prevent overeating and obesity.
Resumo:
The objective of this paper is to propose a protocol to analyze blood samples in yellow fever 17DD vaccinated which developed serious adverse events. We investigated whether or not the time between sample collection and sample processing could interfere in lymphocyte subset percentage, for it is often impossible to analyze blood samples immediately after collection due to transport delay from collection places to the flow cytometry facility. CD4+CD38+ T, CD8+CD38+ T, CD3+ T, CD19+ B lymphocyte subsets were analyzed by flow cytometry in nine healthy volunteers immediately after blood collection and after intervals of 24 and 48 h. The whole blood lysis method and gradient sedimentation by Histopaque were applied to isolate peripheral blood mononuclear cells for flow cytometry analyses. With the lysis method, there was no significant change in lymphocyte subset percentage between the two time intervals (24 and 48 h). In contrast, when blood samples were processed by Histopaque gradient sedimentation, time intervals for sample processing influenced the percentage in T lymphocyte subsets but not in B cells. From the results obtained, we could conclude that the whole blood lysis method is more appropriate than gradient sedimentation by Histopaque for immunophenotyping of blood samples collected after serious adverse events, due to less variation in the lymphocyte subset levels with respect to the time factor.
Resumo:
At the age of 50, a woman has a lifetime risk of more than 40% to present a vertebral fracture. More than 60% of vertebral fractures remain undiagnosed. As a consequence it is of major importance to develop screening strategies to detect these fractures. Vertebral fracture assessment (VFA) by DXA allows one to detect vertebral fracture from T4 to L4 using DXA devices, while performing also during the same visit the bone mineral density measurement. Such an approach should improve the evaluation of fracture risk and therapeutic indication. Compared to the standard X-ray assessment, VFA highly enables to detect moderate or severe vertebral fractures below T6.
Resumo:
Arenaviruses include several causative agents of hemorrhagic fever (HF) disease in humans that are associated with high morbidity and significant mortality. Morbidity and lethality associated with HF arenaviruses are believed to involve the dysregulation of the host innate immune and inflammatory responses that leads to impaired development of protective and efficient immunity. The molecular mechanisms underlying this dysregulation are not completely understood, but it is suggested that viral infection leads to disruption of early host defenses and contributes to arenavirus pathogenesis in humans. We demonstrate in the accompanying paper that the prototype member in the family, lymphocytic choriomeningitis virus (LCMV), disables the host innate defense by interfering with type I interferon (IFN-I) production through inhibition of the interferon regulatory factor 3 (IRF3) activation pathway and that the viral nucleoprotein (NP) alone is responsible for this inhibitory effect (C. Pythoud, W. W. Rodrigo, G. Pasqual, S. Rothenberger, L. Martínez-Sobrido, J. C. de la Torre, and S. Kunz, J. Virol. 86:7728-7738, 2012). In this report, we show that LCMV-NP, as well as NPs encoded by representative members of both Old World (OW) and New World (NW) arenaviruses, also inhibits the nuclear translocation and transcriptional activity of the nuclear factor kappa B (NF-κB). Similar to the situation previously reported for IRF3, Tacaribe virus NP (TCRV-NP) does not inhibit NF-κB nuclear translocation and transcriptional activity to levels comparable to those seen with other members in the family. Altogether, our findings demonstrate that arenavirus infection inhibits NF-κB-dependent innate immune and inflammatory responses, possibly playing a key role in the pathogenesis and virulence of arenavirus.
Resumo:
Kaposiform hemangioendothelioma (KHE) and tufted angioma (TA) are rare tumors mainly occurring in early childhood. Our recent results showed that ectopic overexpression of human Prox1 gene, a lymphatic endothelial nuclear transcription factor, promoted an aggressive behavior in 2 murine models of KHE. This dramatic Prox1-induced phenotype prompted us to investigate immunohistochemical staining pattern of Prox1, podoplanin (D2-40), LYVE-1, and Prox1/CD34 as well as double immunofluorescent staining pattern of LYVE-1/CD31 in KHE and TA, compared with other pediatric vascular tumors. For this purpose, we examined 75 vascular lesions: KHE (n=18), TA (n=13), infantile hemangioma (n=13), pyogenic granuloma (n=18), and granulation tissue (n=13). Overall, KHE and TA shared an identical endothelial immunophenotype: the neoplastic spindle cells were Prox1, podoplanin, LYVE-1, CD31, and CD34, whereas endothelial cells within glomeruloid foci were Prox1, podoplanin, LYVE-1, CD31, and CD34. The lesional cells of all infantile hemangiomas and pyogenic granulomas were negative for Prox1 in the presence of positive internal control. These findings provide immunophenotypic evidence to support a preexisting notion that KHE and TA are closely related, if not identical. Overall, our results show, for the first time, that Prox1 is an immunohistochemical biomarker helpful in confirming the diagnosis of KHE/TA and in distinguishing it from infantile hemangioma and pyogenic granuloma.
Resumo:
The development of orally active small molecule inhibitors of the epidermal growth factor receptor (EGFR) has led to new treatment options for non-small cell lung cancer (NSCLC). Patients with activating mutations of the EGFR gene show sensitivity to, and clinical benefit from, treatment with EGFR tyrosine kinase inhibitors (EGFR-TKls). First generation reversible ATP-competitive EGFR-TKls, gefitinib and erlotinib, are effective as first, second-line or maintenance therapy. Despite initial benefit, most patients develop resistance within a year, 50-60% of cases being related to the appearance of a T790M gatekeeper mutation. Newer, irreversible EGFR-TKls - afatinib and dacomitinib - covalently bind to and inhibit multiple receptors in the ErbB family (EGFR, HER2 and HER4). These agents have been mainly evaluated for first-line treatment but also in the setting of acquired resistance to first-generation EGFR-TKls. Afatinib is the first ErbB family blocker approved for patients with NSCLC with activating EGFR mutations; dacomitinib is in late stage clinical development. Mutant-selective EGFR inhibitors (AZD9291, CO-1686, HM61713) that specifically target the T790M resistance mutation are in early development. The EGFR-TKIs differ in their spectrum of target kinases, reversibility of binding to EGFR receptor, pharmacokinetics and potential for drug-drug interactions, as discussed in this review. For the clinician, these differences are relevant in the setting of polymedicated patients with NSCLC, as well as from the perspective of innovative anticancer drug combination strategies.
Resumo:
The expression of the Bacillus subtilis W23 tar genes specifying the biosynthesis of the major wall teichoic acid, the poly(ribitol phosphate), was studied under phosphate limitation using lacZ reporter fusions. Three different regulation patterns can be deduced from these beta-galactosidase activity data: (i) tarD and tarL gene expression is downregulated under phosphate starvation; (ii) tarA and, to a minor extent, tarB expression after an initial decrease unexpectedly increases; and (iii) tarO is not influenced by phosphate concentration. To dissect the tarA regulatory pattern, its two promoters were analysed under phosphate limitation: The P(tarA)-ext promoter is repressed under phosphate starvation by the PhoPR two-component system, whereas, under the same conditions, the P(tarA)-int promoter is upregulated by the action of an extracytoplasmic function (ECF) sigma factor, sigma(M). In contrast to strain 168, sigma(M) is activated in strain W23 in phosphate-depleted conditions, a phenomenon indirectly dependent on PhoPR, the two-component regulatory system responsible for the adaptation to phosphate starvation. These results provide further evidence for the role of sigma(M) in cell-wall stress response, and suggest that impairment of cell-wall structure is the signal activating this ECF sigma factor.
Resumo:
Human B cell-activating factor (BAFF) induces mouse surface IgM+ B cells of the immature type from bone marrow and of the immature types 1 and 2 from spleen, as well as of the mature type from spleen to increased longevity in tissue culture. BAFF does so polyclonally and without inducing proliferation in any of these B cell subpopulations. BAFF induces phenotypic and functional maturation of immature to mature B cells so that all immature cells loose C1qRp (AA4.1, 493) expression and type 1 immature cells up-regulate IgD, CD21 and CD23. Immature B cells of types 1 and 2, upon pre-incubation with BAFF, change their reactiveness to Ig-specific antibodies so that they no longer enter apoptosis but now proliferate. However, BAFF does not seem to overcome negative selection of developing immature B cells in vitro.
Resumo:
Anaplasma marginale is an important vector-borne rickettsia of ruminants in tropical and subtropical regions of the world. Immunization with purified outer membranes of this organism induces protection against acute anaplasmosis. Previous studies, with proteomic and genomic approach identified 21 proteins within the outer membrane immunogen in addition to previously characterized major surface protein1a-5 (MSP1a-5). Among the newly described proteins were VirB9, VirB10, and elongation factor-Tu (EF-Tu). VirB9, VirB10 are considered part of the type IV secretion system (TFSS), which mediates secretion or cell-to-cell transfer of macromolecules, proteins, or DNA-protein complexes in Gram-negative bacteria. EF-Tu can be located in the bacterial surface, mediating bacterial attachment to host cells, or in the bacterial cytoplasm for protein synthesis. However, the roles of VirB9, VirB10, and TFSS in A. marginale have not been defined. VirB9, VirB10, and EF-Tu have not been explored as vaccine antigens. In this study, we demonstrate that sera of cattle infected with A. marginale, with homologous or heterologous isolates recognize recombinant VirB9, VirB10, and EF-Tu. IgG2 from naturally infected cattle also reacts with these proteins. Recognition of epitopes by total IgG and by IgG2 from infected cattle with A. marginale support the inclusion of these proteins in recombinant vaccines against this rickettsia.
Resumo:
In patients with myelodysplastic syndrome (MDS) precursor cell cultures (colony-forming unit cells, CFU-C) can provide an insight into the growth potential of malignant myeloid cells. In a retrospective single-center study of 73 untreated MDS patients we assessed whether CFU-C growth patterns were of prognostic value in addition to established criteria. Abnormalities were classified as qualitative (i.e. leukemic cluster growth) or quantitative (i.e. strongly reduced/absent growth). Thirty-nine patients (53%) showed leukemic growth, 26 patients (36%) had strongly reduced/absent colony growth, and 12 patients showed both. In a univariate analysis the presence of leukemic growth was associated with strongly reduced survival (at 10 years 4 vs. 34%, p = 0.004), and a high incidence of transformation to AML (76 vs. 32%, p = 0.01). Multivariate analysis identified leukemic growth as a strong and independent predictor of early death (relative risk 2.12, p = 0.03) and transformation to AML (relative risk 2.63, p = 0.04). Quantitative abnormalities had no significant impact on the disease course. CFU-C assays have a significant predictive value in addition to established prognostic factors in MDS. Leukemic growth identifies a subpopulation of MDS patients with poor prognosis.