990 resultados para Body suport device


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of coolant gas injection in the stagnation region on the surface heat transfer rates and aerodynamic drag for a large angle blunt body flying at hypersonic Mach number is reported for two stagnation enthalpies. A 60° apex-angle blunt cone model is employed for this purpose with air injection at the nose through a hole of 2mm diameter. The convective surface heating rates and aerodynamic drag are measured simultaneously using surface mounted platinum thin film sensors and internally mounted accelerometer balance system, respectively. About 35–40% reduction in surface heating rates is observed in the vicinity of stagnation region whereas 15–25% reduction in surface heating rates is felt beyond the stagnation region at stagnation enthalpy of 1.6MJ/kg. The aerodynamic drag expressed in terms of drag coefficient is found to increase by 20% due to the air injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report investigations on the texture, corrosion and wear behavior of ultra-fine grained (UFG) Ti-13Nb-Zr alloy, processed by equal channel angular extrusion (ECAE) technique, for biomedical applications. The microstructure obtained was characterized by X-ray line profile analysis, scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). We focus on the corrosion resistance and the fretting behavior, the main considerations for such biomaterials, in simulated body fluid. To this end. potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the UFG alloy in Hanks solution at 37 degrees C. The fretting wear behavior was carried out against bearing steel in the same conditions. The roughness of the samples was also measured to examine the effect of topography on the wear behavior of the samples. Our results showed that the ECAE process increases noticeably the performance of the alloy as orthopedic implant. Although no significant difference was observed in the fretting wear behavior, the corrosion resistance of the UFG alloy was found to be higher than the non-treated material. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the fabrication of free-standing flexible inorganic/organic hybrid structures by exfoliating ZnO nanostructured films from the flat indium tin oxide (ITO)/silicon/sapphire substrates using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS). Strong interaction between ZnO and PEDOT: PSS and the thermomechanical response of PEDOT: PSS are the key issues for the exfoliation to prevail. The performance of the free-standing hybrid structures as rectifiers and photodetectors is better as compared to ITO supported hybrid structures. It is also shown that device properties of hybrid structures can be tuned by using different electrode materials. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729550]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The altered spontaneous emission of an emitter near an arbitrary body can be elucidated using an energy balance of the electromagnetic field. From a classical point of view it is trivial to show that the field scattered back from any body should alter the emission of the source. But it is not at all apparent that the total radiative and non-radiative decay in an arbitrary body can add to the vacuum decay rate of the emitter (i.e.) an increase of emission that is just as much as the body absorbs and radiates in all directions. This gives us an opportunity to revisit two other elegant classical ideas of the past, the optical theorem and the Wheeler-Feynman absorber theory of radiation. It also provides us alternative perspectives of Purcell effect and generalizes many of its manifestations, both enhancement and inhibition of emission. When the optical density of states of a body or a material is difficult to resolve (in a complex geometry or a highly inhomogeneous volume) such a generalization offers new directions to solutions. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the tree cricket Oecanthus henryi, females are attracted by male calls and can choose between males. To make a case for female choice based on male calls, it is necessary to examine male call variation in the field and identify repeatable call features that are reliable indicators of male size or symmetry. Female preference for these reliable call features and the underlying assumption behind this choice, female preference for larger males, also need to be examined. We found that females did prefer larger males during mating, as revealed by the longer mating durations and longer spermatophore retention times. We then examined the correlation between acoustic and morphological features and the repeatability of male calls in the field across two temporal scales, within and across nights. We found that carrier frequency was a reliable indicator of male size, with larger males calling at lower frequencies at a given temperature. Simultaneous playback of male calls differing in frequency, spanning the entire range of natural variation at a given temperature, revealed a lack of female preference for low carrier frequencies. The contrasting results between the phonotaxis and mating experiments may be because females are incapable of discriminating small differences in frequency or because the change in call carrier frequency with temperature renders this cue unreliable in tree crickets. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since it is difficult to find the analytical solution of the governing Poisson equation for double gate MOSFETs with the body doping term included, the majority of the compact models are developed for undoped-body devices for which the analytical solution is available. Proposed is a simple technique to included a body doping term in such surface potential based common double gate MOSFET models also by taking into account any differences between the gate oxide thickness. The proposed technique is validated against TCAD simulation and found to be accurate as long as the channel is fully depleted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work proposes a new sensing methodology, which uses Fiber Bragg Gratings (FBGs) to measure in vivo the surface strain and strain rate on calf muscles while performing certain exercises. Two simple exercises, namely ankle dorsi-flexion and ankle plantar-flexion, have been considered and the strain induced on the medial head of the gastrocnemius muscle while performing these exercises has been monitored. The real time strain generated has been recorded and the results are compared with those obtained using a commercial Color Doppler Ultrasound (CDU) system. It is found that the proposed sensing methodology is promising for surface strain measurements in biomechanical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the rapid scaling down of the semiconductor process technology, the process variation aware circuit design has become essential today. Several statistical models have been proposed to deal with the process variation. We propose an accurate BSIM model for handling variability in 45nm CMOS technology. The MOSFET is designed to meet the specification of low standby power technology of International Technology Roadmap for Semiconductors (ITRS).The process parameters variation of annealing temperature, oxide thickness, halo dose and title angle of halo implant are considered for the model development. One parameter variation at a time is considered for developing the model. The model validation is done by performance matching with device simulation results and reported error is less than 10%.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of optimization in vehicle design is often blurred by the myriads of requirements belonging to attributes that may not be quite related. If solutions are sought by optimizing attribute performance-related objectives separately starting with a common baseline design configuration as in a traditional design environment, it becomes an arduous task to integrate the potentially conflicting solutions into one satisfactory design. It may be thus more desirable to carry out a combined multi-disciplinary design optimization (MDO) with vehicle weight as an objective function and cross-functional attribute performance targets as constraints. For the particular case of vehicle body structure design, the initial design is likely to be arrived at taking into account styling, packaging and market-driven requirements. The problem with performing a combined cross-functional optimization is the time associated with running such CAE algorithms that can provide a single optimal solution for heterogeneous areas such as NVH and crash safety. In the present paper, a practical MDO methodology is suggested that can be applied to weight optimization of automotive body structures by specifying constraints on frequency and crash performance. Because of the reduced number of cases to be analyzed for crash safety in comparison with other MDO approaches, the present methodology can generate a single size-optimized solution without having to take recourse to empirical techniques such as response surface-based prediction of crash performance and associated successive response surface updating for convergence. An example of weight optimization of spaceframe-based BIW of an aluminum-intensive vehicle is given to illustrate the steps involved in the current optimization process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of a computer emerged from modeling and analyzing concepts (ideas) to generate concepts. Research into methods for supporting conceptual design using automated synthesis had attracted much attention in the past decades. To find out how designers synthesize solution concepts for multi-state mechanical devices, ten experimental studies were conducted. Observations from these empirical studies would be used as the basis to develop knowledge involved in the multi-state design synthesis process. In this paper, we propose a computational representation for expressing the multi-state design task and for enumerating multi-state behaviors of kinematic pairs and mechanisms. This computational representation would be used to formulate computational methods for the synthesis process to develop a system for supporting design synthesis of multiple state mechanical devices by generating a comprehensive variety of solution alternatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of poly (ethylene-co-methacrylic acid) (PEMA) and poly (vinyl alcohol-co-ethylene) (EVOH) were studied for encapsulating Schottky structured organic devices. A calcium degradation test was used to determine water vapor transmission rates and to determine the moisture barrier performance of neat and blend films. Moisture barrier analysis for the neat and blend compositions was discussed concerning the interactions in the blend, diffusivity of water molecules through the unit cell systems, and the occupiable free volumes available in the unit cells using molecular dynamics simulations. The experimental results of water vapor permeation were correlated with diffusion behavior predicted from molecular dynamics simulations results. The effectiveness of the blend as a suitable barrier material in increasing the lifetime of an encapsulated Schottky structured organic device was determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boundary layers are subject to favorable and adverse pressure gradients because of both the temporal and spatial components of the pressure gradient. The adverse pressure gradient may cause the flow to separate. In a closed loop unsteady tunnel we have studied the initiation of separation in unsteady flow past a constriction (bluff body) in a channel. We have proposed two important scalings for the time when boundary layer separates. One is based on the local pressure gradient and the other is a convective time scale based on boundary layer parameters. The flow visualization using a dye injection technique shows the flow structure past the body. Nondimensional shedding frequency (Strouhal number) is calculated based on boundary layer and momentum thicknesses. Strouhal number based on the momentum thickness shows a close agreement with that for flat plate and circular cylinder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a blood pressure evaluation methodology by recording the radial arterial pulse waveform in real time using a fiber Bragg grating pulse device (FBGPD). Here, the pressure responses of the arterial pulse in the form of beat-to-beat pulse amplitude and arterial diametrical variations are monitored. Particularly, the unique signatures of pulse pressure variations have been recorded in the arterial pulse waveform, which indicate the systolic and diastolic blood pressure while the patient is subjected to the sphygmomanometric blood pressure examination. The proposed method of blood pressure evaluation using FBGPD has been validated with the auscultatory method of detecting the acoustic pulses (Korotkoff sounds) by an electronic stethoscope. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the conducting polymers though having good material property are not solution processable. Hence an alternate method of fabrication of film by pulsed laser deposition, was explored in this work. PDTCPA, a donor-acceptor-donor type of polymer having absorption from 900 nm to 300 nm was deposited by both UV and IR laser to understand the effect of deposition parameters on the film quality. It was observed that the laser ablation of PDTCPA doesn't alter its chemical structure hence retaining the chemical integrity of the polymer. Microscopic studies of the ablated film shows that the IR laser ablated films were particulate in nature while UV laser ablated films are deposited as smooth continuous layer. The morphology of the film influences its electrical characteristics as current-voltage characteristic of these films shows that films deposited by UV laser are p rectifying while those by IR laser are more of resistor in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damaged articulating joints can be repaired or replaced with synthetic biomaterials, which can release wear debris due to articulation, leading to the osteolysis. In a recent work, it has been shown that it is possible to achieve a better combination of flexural strength/fracture toughness as well as in vitro bioactivity and cytocompatibility properties in spark plasma sintered hydroxyapatite-titanium (HA-Ti) composites. Although hydroxyapatite and titanium are well documented for their good biocompatibility, nanosized hydroxyapatite (HA) and titanium (Ti) particles can cause severe toxicity to cells. In order to address this issue, fretting wear study of HA-Ti composites under dry and wet (1x SBF, supplemented with 5 g l(-1) bovine serum albumin (BSA)) condition was performed to assess the wear resistance as well as wear debris formation, in vitro. The experimental results reveal one order of magnitude lower wear rate for HA-10 wt% Ti (7.5 x 10(-5) mm(3) N-1 m(-1)) composite than monolithic HA (3.9 x 10(-4) mm(3) N-1 m(-1)) in simulated body fluid. The difference in the tribological properties has been analyzed in the light of phase assemblages and mechanical properties. Overall, the results suggest the potential use of HA-Ti composites over existing HA-based biocomposites in orthopedic as well as dental applications.