866 resultados para Birds nests
Resumo:
In birds with facultative brood reduction, survival of the junior chick is thought to be regulated primarily by food availability. In black-legged kittiwakes (Rissa tridactyla) where parents and chicks are provided with unlimited access to supplemental food during the breeding season, brood reduction still occurs and varies interannually. Survival of the junior chick is therefore affected by factors in addition to the amount of food directly available to them. Maternally deposited yolk androgens affect competitive dynamics within a brood, and may be one of the mechanisms by which mothers mediate brood reduction in response to a suite of environmental and physiological cues. The goal of this study was to determine whether food supplementation during the pre-lay period affected patterns of yolk androgen deposition in free-living kittiwakes in two years (2003 and 2004) that varied in natural food availability. Chick survival was measured concurrently in other nests where eggs were not collected. In both years, supplemental feeding increased female investment in eggs by increasing egg mass. First-laid ("A") eggs were heavier but contained less testosterone and androstenedione than second-laid ("B") eggs across years and treatments. Yolk testosterone was higher in 2003 (the year with higher B chick survival) across treatments. The difference in yolk testosterone levels between eggs within a clutch varied among years and treatments such that it was relatively small when B chick experienced the lowest and the highest survival probabilities, and increased with intermediate B chick survival probabilities. The magnitude of testosterone asymmetry in a clutch may allow females to optimize fitness by either predisposing a brood for reduction or facilitating survival of younger chicks.
Seropositivity and Risk Factors Associated with Toxoplasma gondii Infection in Wild Birds from Spain
Resumo:
Toxoplasma gondii is a zoonotic intracellular protozoan parasite of worldwide distribution that infects many species of warm-blooded animals, including birds. To date, there is scant information about the seropositivity of T. gondii and the risk factors associated with T. gondii infection in wild bird populations. In the present study, T. gondii infection was evaluated on sera obtained from 1079 wild birds belonging to 56 species (including Falconiformes (n = 610), Strigiformes (n = 260), Ciconiiformes (n = 156), Gruiformes (n = 21), and other orders (n = 32), from different areas of Spain. Antibodies to T. gondii (modified agglutination test, MAT titer ≥1:25) were found in 282 (26.1%, IC95%:23.5–28.7) of the 1079 birds. This study constitute the first extensive survey in wild birds species in Spain and reports for the first time T. gondii antibodies in the griffon vulture (Gyps fulvus), short-toed snake-eagle (Circaetus gallicus), Bonelli's eagle (Aquila fasciata), golden eagle (Aquila chrysaetos), bearded vulture (Gypaetus barbatus), osprey (Pandion haliaetus), Montagu's harrier (Circus pygargus), Western marsh-harrier (Circus aeruginosus), peregrine falcon (Falco peregrinus), long-eared owl (Asio otus), common scops owl (Otus scops), Eurasian spoonbill (Platalea leucorodia), white stork (Ciconia ciconia), grey heron (Ardea cinerea), common moorhen (Gallinula chloropus); in the International Union for Conservation of Nature (IUCN) “vulnerable” Spanish imperial eagle (Aquila adalberti), lesser kestrel (Falco naumanni) and great bustard (Otis tarda); and in the IUCN “near threatened” red kite (Milvus milvus). The highest seropositivity by species was observed in the Eurasian eagle owl (Bubo bubo) (68.1%, 98 of 144). The main risk factors associated with T. gondii seropositivity in wild birds were age and diet, with the highest exposure in older animals and in carnivorous wild birds. The results showed that T. gondii infection is widespread and can be at a high level in many wild birds in Spain, most likely related to their feeding behaviour.
Characterization of Pasteurellaceae-like bacteria isolated from clinically affected psittacine birds
Resumo:
AIMS: The aim of the present investigation was to identify and characterize Pasteurella-like isolates obtained from clinically affected psittacine birds. METHODS AND RESULTS: A total of 37 isolates from psittacine birds tentatively classified with the family Pasteurellaceae were characterized phenotypically. The genetic relationship was investigated by sequencing of partial rpoB and 16S rRNA genes for selected isolates. The results obtained were compared with the data from 16 reference strains. Nine isolates were identified as Gallibacterium spp., 16 as Volucribacter spp. or Volucribacter-like, while 11 isolates were classified as taxon 44 of Bisgaard. A single isolate was identified as Pasteurella multocida. CONCLUSIONS: Characterization of Pasteurellaceae by traditional methods is often inconclusive because of inconsistent reactions and phenotypic diversity. For the same reason, genotyping is essential to allow proper classification as demonstrated in the present study. SIGNIFICANCE AND IMPACT OF THE STUDY: Limited information exists on the isolation and significance of Pasteurellaceae associated with clinically affected psittacine birds showing signs of digestive and/or respiratory disorders. The present investigations demonstrated that these organisms are widely distributed among clinically affected birds, but isolation of these taxa cannot be unambiguously correlated with the symptoms observed.
Resumo:
When highly pathogenic avian influenza H5N1 (HPAI H5N1) arrived at Lake Constance in February 2006, little was known about its ecology and epidemiology in wild birds. In order to prevent virus transmission from wild birds to poultry, the adjacent countries initiated the tri-national, interdisciplinary research program <
Resumo:
Animal coloration often serves as a signal to others that may communicate traits about the individual such as toxicity, status, or quality. Colorful ornaments in many animals are often honest signals of quality assessed by mates, and different colors may beproduced by different biochemical pigments. Investigations of the mechanisms responsible for variation in color expression among birds are best when including a geographically and temporally broad sample. In order to obtain such a sample, studies such as this often use museum specimens; however, in order for museum specimens toserve as an accurate replacement, they must accurately represent living birds, or we must understand the ways in which they differ. In this thesis, I investigated the link between feather corticosterone, a hormone secreted in response to stress, and carotenoid-basedcoloration in the Red-winged Blackbird (Agelaius phoeniceus) in order to explore a mechanistic link between physiological state and color expression. Male Red-winged Blackbirds with lower feather corticosterone had significantly brighter red epaulets than birds with higher feather corticosterone, while I found no significant changes in red chroma. I also performed a methodological comparison of color change in museum specimens among different pigment types (carotenoid and psittacofulvin) and pigments in different locations in the body (feather and bill carotenoids) in order to quantify colorchange over time. Carotenoids and psittacofulvins showed significant reductions in red brightness and chroma over time in the collection, and carotenoid color changed significantly faster than psittacofulvin color. Both bill and feather carotenoids showed significant reductions in red brightness and red chroma over time, but change of both red chroma and red brightness occurred at a similar rate in feathers and bills. In order to use museum specimens of ecological research on bird coloration specimen age must be accounted for before the data can be used; however, once this is accomplished, museum- based color data may be used to draw conclusions about wild populations.
Resumo:
We used a colour-space model of avian vision to assess whether a distinctive bird pollination syndrome exists for floral colour among Australian angiosperms. We also used a novel phylogenetically based method to assess whether such a syndrome represents a significant degree of convergent evolution. About half of the 80 species in our sample that attract nectarivorous birds had floral colours in a small, isolated region of colour space characterized by an emphasis on long-wavelength reflection. The distinctiveness of this 'red arm' region was much greater when colours were modelled for violet-sensitive (VS) avian vision than for the ultraviolet-sensitive visual system. Honeyeaters (Meliphagidae) are the dominant avian nectarivores in Australia and have VS vision. Ancestral state reconstructions suggest that 31 lineages evolved into the red arm region, whereas simulations indicate that an average of five or six lineages and a maximum of 22 are likely to have entered in the absence of selection. Thus, significant evolutionary convergence on a distinctive floral colour syndrome for bird pollination has occurred in Australia, although only a subset of bird-pollinated taxa belongs to this syndrome. The visual system of honeyeaters has been the apparent driver of this convergence.
Resumo:
Predation pressure has long been considered a leading explanation of colonies, where close neighbors may reduce predation via dilution, alarming or group predator attacks. Attacking predators may be costly in terms of energy and survival, leading to the question of how neighbors contribute to predator deterrence in relationship to each other. Two hypotheses explaining the relative efforts made by neighbors are byproduct-mutualism, which occurs when breeders inadvertently attack predators by defending their nests, and reciprocity, which occurs when breeders deliberately exchange predator defense efforts with neighbors. Most studies investigating group nest defense have been performed with birds. However, colonial fish may constitute a more practical model system for an experimental approach because of the greater ability of researchers to manipulate their environment. We investigated in the colonial fish, Neolamprologus caudopunctatus, whether prospecting pairs preferred to breed near conspecifics or solitarily, and how breeders invested in anti-predator defense in relation to neighbors. In a simple choice test, prospecting pairs selected breeding sites close to neighbors versus a solitary site. Predators were then sequentially presented to the newly established test pairs, the previously established stimulus pairs or in between the two pairs. Test pairs attacked the predator eight times more frequently when they were presented on their non-neighbor side compared to between the two breeding sites, where stimulus pairs maintained high attack rates. Thus, by joining an established pair, test pairs were able to reduce their anti-predator efforts near neighbors, at no apparent cost to the stimulus pairs. These findings are unlikely to be explained by reciprocity or byproduct-mutualism. Our results instead suggest a commensal relationship in which new pairs exploit the high anti-predator efforts of established pairs, which invest similarly with or without neighbors. Further studies are needed to determine the scope of commensalism as an anti-predator strategy in colonial animals.
Resumo:
As a consequence of the deleterious effects of parasites on host fitness, hosts have evolved responses to minimize the negative impact of parasite infection. Facultative parasite-induced responses are favoured when the risk of infection is unpredictable and host responses are costly. In vertebrates, induced responses are generally viewed as being adaptive, although evidence for fitness benefits arising from these responses in natural host populations is lacking. Here we provide experimental evidence for direct reproductive benefits in flea-infested great tit nests arising from exposure during egg production to fleas. In the experiment we exposed a group of birds to fleas during egg laying (the exposed group), thereby allowing for induced responses, and kept another group free of parasites (the unexposed group) over the same time period. At the start of incubation, we killed the parasites in both groups and all nests were reinfested with fleas. If induced responses occur and are adaptive, we expect that birds of the exposed group mount earlier responses and achieve higher current reproductive success than birds in the unexposed group. In agreement with this prediction, our results show that birds with nests infested during egg-laying have (i) fewer breeding failures and raise a higher proportion of hatchlings to hedging age; () offspring that reach greater body mass, grow longer feathers, and hedge earlier, and (iii) a higher number of recruits and first-year grandchildren than unexposed birds. Flea reproduction and survival did not differ significantly between the two treatments. These results provide the first evidence for the occurrence and the adaptiveness of induced responses against a common ectoparasite in a wild population of vertebrates. [References: 50]