943 resultados para Biotic communities -- Mediterranean Sea
Resumo:
A high-resolution stratigraphic framework is presented for sapropel S5, which represents the low-mid latitude climate optimum of the previous interglacial period (Eemian). The framework is based on three sites along a transect from west to east through the eastern Mediterranean, and is further validated using a fourth site. This method allows expression of S5-based proxy records of Eemian climate variability along a standardised depth scale that offers unprecedented possibilities for assessment of spatial gradients and signal leads and lags in an interval where highresolution (radiocarbon-style) dating cannot be performed. Our lateral comparison of S5 sapropels suggests that the onset of S5 in ODP site 967C (Eratosthenes seamount) was 1-6 centuries delayed relative to the onsets in more westerly sites.
Resumo:
The IMAGES core MD99-2343, recovered from a sediment drift north of the island of Minorca, in the north-western Mediterranean Sea, holds a high-resolution sequence that is perfectly suited to study the oscillations of the overturning system of the Western Mediterranean Deep Water (WMDW). Detailed analysis of grain-size and bulk geochemical composition reveals the sensitivity of this region to climate changes at both orbital and centennial-millennial temporal scales during the last 50 kyr. The dominant orbital pattern in the K/Al record indicates that sediment supply to the basin was controlled by the insolation evolution at 40°N, which forced changes in the fluvial regime, with more efficient sediment transport during insolation maxima. This orbital control also modulated the long-term pattern of the WMDW intensity as illustrated by the silt/clay ratio. However, deep convection was particularly sensitive to climatic changes at shorter time-scales, i.e. to centennial-millennial glacial and Holocene oscillations that are well documented by all the paleocurrent intensity proxies (Si/Al, Ti/Al and silt/clay ratios). Benthic isotopic records (d13C and d18O) show a Dansgaard-Oeschger (D-O) pattern of variability of WMDW properties, which can be associated with changing intensities of the deep currents system. The most prominent reduction on the WMDW overturning was caused by the post-glacial sea level rise. Three main scenarios of WMDW overturning are revealed: a strong mode during D-O Stadials, a weak mode during D-O Interstadials and an intermediate mode during cooling transitions. In addition, D-O Stadials associated with Heinrich events (HEs) have a very distinct signature as the strong mode of circulation, typical for the other D-O Stadials, was never reached during HE due to the surface freshening induced by the inflowing polar waters. Consequently, the WMDW overturning system oscillated around the intermediate mode of circulation during HE. Though surface conditions were more stable during the Holocene, the WMDW overturning cell still reacted synchronously to short-lived events, as shown by increments in the planktonic d18O record, triggering quick reinforcements of the deep water circulation. Overall, these results highlight the sensitivity of the WMDW to rapid climate change which in the recent past were likely induced by oceanographic and atmospheric reorganizations in the North Atlantic region.
Sea-bed images of permanent plots of rocky benthos at Marseille, site Plane Grotte à Peres, plot P7D
Sea-bed images of permanent plots of rocky benthos at Marseille, site Plane Grotte à Peres, plot P8E
Resumo:
The HCMR_SES_LAGRANGIAN_GR2_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during October 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Bacterial production was estimated by the 3H-leucine method (Kirchman et al. 1986, Kirchman 1993). At each depth, duplicate samples and a control were incubated with 20 nM L-[4,5 3H]-leucine. Samples were incubated in the dark, at in situ temperature.