481 resultados para Biomaterial


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. Methodology/Principal Findings: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E) for microscopic analyses. Conclusion/Significance: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Several materials have been used for tissue engineering purposes, since the ideal matrix depends on the desired tissue. Silk biomaterials have come to focus due to their great mechanical properties. As untreated silkworm silk has been found to be quite immunogenic, an alternative could be spider silk. Not only does it own unique mechanical properties, its biocompatibility has been shown already in vivo. In our study, we used native spider dragline silk which is known as the strongest fibre in nature. Methodology/Principal Findings: Steel frames were originally designed and manufactured and woven with spider silk, harvesting dragline silk directly out of the animal. After sterilization, scaffolds were seeded with fibroblasts to analyse cell proliferation and adhesion. Analysis of cell morphology and actin filament alignment clearly revealed adherence. Proliferation was measured by cell count as well as determination of relative fluorescence each after 1, 2, 3, and 5 days. Cell counts for native spider silk were also compared with those for trypsin-digested spider silk. Spider silk specimens displayed less proliferation than collagen-and fibronectin-coated cover slips, enzymatic treatment reduced adhesion and proliferation rates tendentially though not significantly. Nevertheless, proliferation could be proven with high significance (p<0.01). Conclusion/Significance: Native spider silk does not require any modification to its application as a biomaterial that can rival any artificial material in terms of cell growth promoting properties. We could show adhesion mechanics on intracellular level. Additionally, proliferation kinetics were higher than in enzymatically digested controls, indicating that spider silk does not require modification. Recent findings concerning reduction of cell proliferation after exposure could not be met. As biotechnological production of the hierarchical composition of native spider silk fibres is still a challenge, our study has a pioneer role in researching cellular mechanics on native spider silk fibres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ideal biomaterial for dental implants must have very high biocompatibility, which means that such materials should not provoke any serious adverse tissue response. Also, used metal alloys must have high fatigue resistance due the masticatory force and good corrosion resistance. These properties are rendered by using alpha and beta stabilizers, such as Al, V, Ni, Fe, Cr, Cu, Zn. Commercially pure titanium (TiCP) is used often for dental and orthopedic implants manufacturing. However, sometimes other alloys are employed and consequently it is essential to research the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of stabilizing elements within existing limits and standards for such materials. For alloy characterization and identification of stabilizing elements it was used EDXRF technique. This method allows to perform qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- rays tubes (AMPTEK Mini X model with Ag and Au targets), a X-123SDD detector (AMPTEK) and a 0.5mm Cu collimator, developed due to the sample characteristics. The other experimental setup used as a complementary technique is composed of an X-ray tube with a Mo target, collimator 0.65mm and XFlash (SDD) detector - ARTAX 200 (BRUKER). Other method for elemental characterization by energy dispersive spectroscopy (EDS) applied in present work was based on Scanning Electron Microscopy (SEM) EVO® (Zeeis). This method also was used to evaluate the surface microstructure of the sample. The percentual of Ti obtained in the elementary characterization was among 93.35 ± 0.17% and 95.34 ± 0.19 %. These values are considered below the reference limit of 98.635% to 99.5% for TiCP, established by Association of metals centric materials engineers and scientists Society (ASM). The presence of elements Al and V in all samples also contributed to underpin the fact that are not TiCP implants. The values for Al vary between 6.3 ± 1.3% and 3.7 ± 2.0% and for V, between 0.26 ± 0.09% and 0.112 ± 0.048%. According to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP and in accordance with the National Institute of Standards and Technology (NIST), the presence of Al should be <0.01% and V should be of 0.009 ± 0.001%. Obtained results showed that implant materials are not exactly TiCP but, were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The quantitative analysis and elementary characterization of experimental results shows that the best accuracy and precision were reached with X-Ray tube with Au target and collimator of 0.5 mm. Use of technique of EDS confirmed the results of EDXRF for Ti-Al-V alloy. Evaluating the surface microstructure by SEM of the implants, it was possible to infer that ten of the thirteen studied samples are contemporaneous, rough surface and three with machined surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine Recirculating Aquaculture Systems (RAS) produce great volume of wastewater, which may be reutilized/recirculated or reutilized after undergoing different treatment/remediation methods, or partly discharged into neighbour water-bodies (DWW). Phosphates, in particular, are usually accumulated at high concentrations in DWW, both because its monitoring is not compulsory for fish production since it is not a limiting parameter, and also because there is no specific treatment so far developed to remove them, especially in what concerns saltwater effluents. As such, this work addresses two main scientific questions. One of them regards the understanding of the actual (bio)remediation methods applied to effluents produced in marine RAS, by identifying their advantages, drawbacks and gaps concerning their exploitation in saltwater effluents. The second one is the development of a new, innovative and efficient method for the treatment of saltwater effluents that potentially fulfil the gaps identified in the conventional treatments. Thereby, the aims of this thesis are: (i) to revise the conventional treatments targeting major contaminants in marine RAS effluents, with a particular focus on the bioremediation approaches already conducted for phosphates; (ii) to characterize and evaluate the potential of oyster-shell waste collected in Ria de Aveiro as a bioremediation agent of phosphates spiked into artificial saltwater, over different influencing factors (e.g., oyster-shell pre-treatment through calcination, particle size, adsorbent concentration). Despite the use of oyster-shells for phosphorous (P) removal has already been applied in freshwater, its biosorptive potential for P in saltwater was never evaluated, as far as I am aware. The results herein generated showed that NOS is mainly composed by carbonates, which are almost completely converted into lime (CaO) after calcination (COS). Such pre-treatment allowed obtaining a more reactive material for P removal, since higher removal percentages and adsorption capacity was observed for COS. Smaller particle size fractions for both NOS and COS samples also increased P removal. Kinetic models showed that NOS adsorption followed, simultaneously, Elovich and Intraparticle Difusion kinetic models, suggesting that P removal is both a diffusional and chemically rate-controlled process. The percentage of P removal by COS was not controlled by Intraparticle Diffusion and the Elovich model was the kinetic model that best fitted phosphate removal. This work demonstrated that waste oyster-shells, either NOS or COS, could be used as an effective biosorbent for P removal from seawater. Thereby, this biomaterial can sustain a cost-effective and eco-friendly bioremediation strategy with potential application in marine RAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commercially pure Titanium (cp Ti) is a material largely used in orthopedic and dental implants due to its biocompatibility properties. Changes in the surface of cp Ti can determine the functional response of the cells such as facilitating implant fixation and stabilization, and increased roughness of the surface has been shown to improve adhesion and cellular proliferation. Various surface modification methods have been developed to increase roughness, such as mechanical, chemical, electrochemical and plasma treatment. An argon plasma treatment generates a surface that has good mechanical proprieties without chemical composition modification. Besides the topography, biological responses to the implant contribute significantly to its success. Oxidative stress induced by the biomaterials is considered one of the major causes of implant failure. For this reason the oxidative potential of titanium surfaces subjected to plasma treatment was evaluated on this work. CHO-k1 cells were cultivated on smooth or roughed Ti disks, and after three days, the redox balance was investigated measuring reactive oxygen species (ROS) generation, total antioxidant capacity and biomarkers of ROS attack. The results showed cells grown on titanium surfaces are subjected to intracellular oxidative stress due to hydrogen peroxide generation. Titanium discs subjected to the plasma treatment induced less oxidative stress than the untreated ones, which resulted in improved cellular ability. Our data suggest that plasma treated titanium may be a more biocompatible biomaterial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El hidroxiapatito es el biomineral de los tejidos duros de los mamíferos y por ello ha sido ampliamente estudiado como biomaterial en cementos óseos, recubrimientos de metales implantables y scaffold en ingeniería de tejidos. En este trabajo, se estudia un proceso síntesis y caracterización de un derivado de este material, donde el ion fosfonato: 2- hidroxifosfonoacetato sustituye parcialmente al ion fosfato [1-10%]. El proceso de síntesis de hidroxiapatito consiste en dos etapas: (1) una reacción a 100ºC entre el ácido fosfórico (añadido lentamente) y una mezcla de hidróxido de calcio + 2-hidroxifosfonoacetato de calcio (Relación Ca/P=1.67). (2) un tratamiento térmico de los sólidos obtenidos en (1) a 150ºC. Los productos finales se han caracterizado mediante análisis químico, análisis termogravimétrico, difracción de rayos-X con análisis de Rietveld, microscopía SEM y determinación de la superficie específica y porosidad. En las fases cristalinas, el grado de pureza de los hidroxiapatitos oscila entre 91-100%. Todos presentan estructura monoclínica, en contraste con la estructura hexagonal que habitualmente se obtiene aplicando métodos de síntesis similares. Esta variación se atribuye a la presencia de fosfonato. El contenido de éste también influye en la morfología y en la porosidad de los materiales, siendo las muestras con más fosfonato las más porosas. Los materiales, al menos aquellos con una cantidad menor o igual 5% de fosfonato, muestran una biocompatibilidad similar a un material de hidroxiapatito de referencia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human multipotent mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have become an important and attractive therapeutic tool since they are easily isolated and cultured, have in vitro expansion potential, substantial plasticity and secrete bioactive molecules that exert trophic effects. The human umbilical cord as a cell source for cell therapy will help to avoid several ethical, political, religious and technical issues. One of the main issues with SC lines from different sources, mainly those of embryonic origin, is the possibility of chromosomal alterations and genomic instability during in vitro expansion. Cells isolated from one umbilical cord exhibited a rare balanced paracentric inversion, likely a cytogenetic constitutional alteration, karyotype: 46,XY,inv(3)(p13p25~26). Important genes related to cancer predisposition and others involved in DNA repair are located in 3p25~26. Titanium is an excellent biomaterial for bone-implant integration; however, the use can result in the generation of particulate debris that can accumulate in the tissues adjacent to the prosthesis, in the local bone marrow, in the lymph nodes, liver and spleen. Subsequently may elicit important biological responses that aren´t well studied. In this work, we have studied the genetic stability of MSC isolated from the umbilical cord vein during in vitro expansion, after the cryopreservation, and under different concentrations and time of exposition to titanium microparticles. Cells were isolated, in vitro expanded, demonstrated capacity for osteogenic, adipogenic and chondrogenic differentiation and were evaluated using flow cytometry, so they met the minimum requirements for characterization as MSCs. The cells were expanded under different concentrations and time of exposition to titanium microparticles. The genetic stability of MSCs was assessed by cytogenetic analysis, fluorescence in situ hybridization (FISH) and analysis of micronucleus and other nuclear alterations (CBMN). The cells were able to internalize the titanium microparticles, but MSCs preserve their morphology, differentiation capacity and surface marker expression profiles. Furthermore, there was an increase in the genomic instability after long time of in vitro expansion, and this instability was greater when cells were exposed to high doses of titanium microparticles that induced oxidative stress. It is necessary always assess the risks/ benefits of using titanium in tissue therapy involving MSCs, considering the biosafety of the use of bone regeneration using titanium and MSCs. Even without using titanium, it is important that the therapeutic use of such cells is based on analyzes that ensure quality, security and cellular stability, with the standardization of quality control programs appropriate. In conclusion, it is suggested that cytogenetic analysis, FISH analysis and the micronucleus and other nuclear alterations are carried out in CTMH before implanting in a patient

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium is a biomaterial widely employed in biomedical applications (implants, prostheses, valves, stents). Several heat treatments are usually used in order to obtain physical properties required to different applications. This work studied the influence of the heat treatment on microstructure of commercial pure titanium, and their consequences in growth and proliferation of MC3T3-E1 cells. Discs of titanium were treated in different temperatures, and characterized by optical microscopy, image analysis, wettabillity, roughness, hardness and X-ray diffraction. After the heat treatment, significant modifications in these properties were observed. Pattern images of titanium, before and after the cell culture, were compared by overlapping to analyze the influence of microstructure in microstructure and preferences guidance cells. However, in general, titanium discs that showed a higher residual strength also presented an increase of cells numbers on surface

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obtención de nano-partículas de plata a partir de biomateriales utilizando una síntesis que no utilice compuestostóxicos y probar la capacidad antimicrobiana de las mismas. Contribuciones y Conclusiones: Se logró la síntesis de nano-partículas de plata utilizando un biomaterial que ejerce control sobre el tamaño de partícula y al mismo las puede recubrir. Esta combinación tiene una capacidad antimicrobiana efectiva.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To compare the alveolar bone repair process using biomaterial in dogs with and without the incorporation of platelet-rich plasma. Methods: Six beagles were used. Bilateral extractions of the three mandibular premolars were performed. Bio-Gen® was applied in the first alveolus, the clot was maintained in the second alveolus and Genox® was applied to the third alveolus. PRP was added to all alveoli on the left side only. The dogs were submitted to euthanasia after 30, 60 and 90 days and submitted to histological analysis for the determination of mean area of new bone formation. Tukey’s post test was used in the statistical analysis. Results: Significant increase in bone formation occurred in Bio-Gen® + PRP when compared with the other groups at 30 and 90 days. In the evaluation at 60 days, no statistically significant differences among the groups were found. Conclusions: The Bio-Gen® biomaterial led to the best bone repair and the combination of platelet-rich plasma accelerated the repair process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The titanium and titanium alloys are widely used as biomaterial in biomedical device and so research have been developed aiming to improve and/or better to understand interaction biomaterial/biological environment. The process for manufacturing of this titanium implants usually involves a series of thermal and mechanical processes which have consequence on the final product. The heat treatments are usually used to obtain different properties for each application. In order to understand the influence of these treatments on the biological response of the surface, it was done, in this work, different heat treatments in titanium and analyzed their influence on the morphology, adhesion and proliferation of the pre-osteoblastic cells (MC3T3-E1). For such heat-treated titanium disks were characterized by optical microscopy, contact angle, surface energy, roughness, microhardness, X-ray diffraction and scanning through the techniques (BSE, EDS and EBSD). For the analysis of biological response were tested by MTT proliferation, adhesion by crystal violet and β1 integrin expression by flow cytometry. It was found that the presence of a microstructure very orderly, defined by a chemical attack, cells tend to stretch in the same direction of orientation of the material microstructure. When this order does not happen, the most important factor influencing cell proliferation is the residual stress, indicated by the hardness of the material. This way the disks with the highest level state of residual stress also showed increased cell proliferation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the advances in medicine, life expectancy of the world population has grown considerably in recent decades. Studies have been performed in order to maintain the quality of life through the development of new drugs and new surgical procedures. Biomaterials is an example of the researches to improve quality of life, and its use goes from the reconstruction of tissues and organs affected by diseases or other types of failure, to use in drug delivery system able to prolong the drug in the body and increase its bioavailability. Biopolymers are a class of biomaterials widely targeted by researchers since they have ideal properties for biomedical applications, such as high biocompatibility and biodegradability. Poly (lactic acid) (PLA) is a biopolymer used as a biomaterial and its monomer, lactic acid, is eliminated by the Krebs Cycle (citric acid cycle). It is possible to synthesize PLA through various synthesis routes, however, the direct polycondensation is cheaper due the use of few steps of polymerization. In this work we used experimental design (DOE) to produce PLAs with different molecular weight from the direct polycondensation of lactic acid, with characteristics suitable for use in drug delivery system (DDS). Through the experimental design it was noted that the time of esterification, in the direct polycondensation, is the most important stage to obtain a higher molecular weight. The Fourier Transform Infrared (FTIR) spectrograms obtained were equivalent to the PLAs available in the literature. Results of Differential Scanning Calorimetry (DSC) showed that all PLAs produced are semicrystalline with glass transition temperatures (Tgs) ranging between 36 - 48 °C, and melting temperatures (Tm) ranging from 117 to 130 °C. The PLAs molecular weight characterized from Size Exclusion Chromatography (SEC), varied from 1000 to 11,000 g/mol. PLAs obtained showed a fibrous morphology characterized by Scanning Electron Microscopy (SEM)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics of metal uptake by gel and dry calcium alginate beads was analysed using solutions of copper or lead ions. Gel beads sorbed metal ions faster than the dry ones and larger diffusivities of metal ions were calculated for gel beads: approximately 10−4 cm2/min vs. 10−6 cm2/min for dry beads. In accordance, scanning electron microscopy and nitrogen adsorption data revealed a low porosity of dry alginate particles. However, dry beads showed higher sorption capacities and a mechanical stability more suitable for large-scale use. Two sorption models were fitted to the kinetic results: the Lagergren pseudo-first order and the Ho and McKay pseudo-second order equations. The former was found to be the most adequate to model metal uptake by dry alginate beads and kinetic constants in the orders of 10−3 and 10−2 min−1 were obtained for lead solutions with concentrations up to 100 g/m3. The pseudo-first order model was also found to be valid to describe biosorbent operation with a real wastewater indicating that it can be used to design processes of metal sorption with alginate-based materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cassava contributes significantly to biobased material development. Conventional approaches for its bio-derivative-production and application cause significant wastes, tailored material development challenges, with negative environmental impact and application limitations. Transforming cassava into sustainable value-added resources requires redesigning new approaches. Harnessing unexplored material source, and downstream process innovations can mitigate challenges. The ultimate goal proposed an integrated sustainable process system for cassava biomaterial development and potential application. An improved simultaneous release recovery cyanogenesis (SRRC) methodology, incorporating intact bitter cassava, was developed and standardized. Films were formulated, characterised, their mass transport behaviour, simulating real-distribution-chain conditions quantified, and optimised for desirable properties. Integrated process design system, for sustainable waste-elimination and biomaterial development, was developed. Films and bioderivatives for desired MAP, fast-delivery nutraceutical excipients and antifungal active coating applications were demonstrated. SRRC-processed intact bitter cassava produced significantly higher yield safe bio-derivatives than peeled, guaranteeing 16% waste-elimination. Process standardization transformed entire root into higher yield and clarified colour bio-derivatives and efficient material balance at optimal global desirability. Solvent mass through temperature-humidity-stressed films induced structural changes, and influenced water vapour and oxygen permeability. Sevenunit integrated-process design led to cost-effectiveness, energy-efficient and green cassava processing and biomaterials with zero-environment footprints. Desirable optimised bio-derivatives and films demonstrated application in desirable in-package O2/CO2, mouldgrowth inhibition, faster tablet excipient nutraceutical dissolutions and releases, and thymolencapsulated smooth antifungal coatings. Novel material resources, non-root peeling, zero-waste-elimination, and desirable standardised methodology present promising process integration tools for sustainable cassava biobased system development. Emerging design outcomes have potential applications to mitigate cyanide challenges and provide bio-derivative development pathways. Process system leads to zero-waste, with potential to reshape current style one-way processes into circular designs modelled on nature's effective approaches. Indigenous cassava components as natural material reinforcements, and SRRC processing approach has initiated a process with potential wider deployment in broad product research development. This research contributes to scientific knowledge in material science and engineering process design.