909 resultados para Automatic Inference
Resumo:
Book review of: Chance Encounters: A First Course in Data Analysis and Inference by Christopher J. Wild and George A.F. Seber 2000, John Wiley & Sons Inc. Hard-bound, xviii + 612 pp ISBN 0-471-32936-3
Resumo:
The shared-memory programming model can be an effective way to achieve parallelism on shared memory parallel computers. Historically however, the lack of a programming standard using directives and the limited scalability have affected its take-up. Recent advances in hardware and software technologies have resulted in improvements to both the performance of parallel programs with compiler directives and the issue of portability with the introduction of OpenMP. In this study, the Computer Aided Parallelisation Toolkit has been extended to automatically generate OpenMP-based parallel programs with nominal user assistance. We categorize the different loop types and show how efficient directives can be placed using the toolkit's in-depth interprocedural analysis. Examples are taken from the NAS parallel benchmarks and a number of real-world application codes. This demonstrates the great potential of using the toolkit to quickly parallelise serial programs as well as the good performance achievable on up to 300 processors for hybrid message passing-directive parallelisations.
Resumo:
In this work we show how automatic relative debugging can be used to find differences in computation between a correct serial program and an OpenMP parallel version of that program that does not yield correct results. Backtracking and re-execution are used to determine the first OpenMP parallel region that produces a difference in computation that may lead to an incorrect value the user has indicated. Our approach also lends itself to finding differences between parallel computations, where executing with M threads produces expected results but an N thread execution does not (M, N > 1, M ≠ N). OpenMP programs created using a parallelization tool are addressed by utilizing static analysis and directive information from the tool. Hand-parallelized programs, where OpenMP directives are inserted by the user, are addressed by performing data dependence and directive analysis.
Resumo:
Automatic taxonomic categorisation of 23 species of dinoflagellates was demonstrated using field-collected specimens. These dinoflagellates have been responsible for the majority of toxic and noxious phytoplankton blooms which have occurred in the coastal waters of the European Union in recent years and make severe impact on the aquaculture industry. The performance by human 'expert' ecologists/taxonomists in identifying these species was compared to that achieved by 2 artificial neural network classifiers (multilayer perceptron and radial basis function networks) and 2 other statistical techniques, k-Nearest Neighbour and Quadratic Discriminant Analysis. The neural network classifiers outperform the classical statistical techniques. Over extended trials, the human experts averaged 85% while the radial basis network achieved a best performance of 83%, the multilayer perceptron 66%, k-Nearest Neighbour 60%, and the Quadratic Discriminant Analysis 56%.
Resumo:
A neural network based tool has been developed to assist in the process of code transformation. The tool offers advice on appropriate transformations within a knowledge-driven, semi-automatic parallelisation environment. We have identified the essential characteristics of codes relevant to loop transformations. A Kohonen network is used to discover structure in the characterised codes thus revealing new knowledge that may be brought to bear on the mapping between codes and transformations or transformation sequences. A transform selector based on this process has been developed and successfully applied to the parallelisation of sequential codes.